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3. Application of the Quantitative Structure Activity Relationships 

(QSAR) approach to modeling of nanomaterials

4. Proof-of-concept: Computer aided design of carbon nanotubes

with the desired bioactivity and safety profiles

Outline: From data to models to 

computer-aided design

1. Data Accumulation: Need to establish an integrated database of 

nanomaterials’ structure and properties

2. Data modeling and nano-informatics: Need to develop new 

descriptors for nanomaterials



~1000 manufacturer-identified nanotechnology-based 

consumer products currently on the market
(Woodrow Wilson International Center for Scholars, 2008).

Recent boost due in part to the application of combinatorial   

chemistry   and   high   throughput   screening to   design   novel 

Manufactured  NanoParticles  (MNPs)

Development of predictive « in silico » approaches

Growing public concern about the safety of MNPs since it has 

been demonstrated that MNPs intended for industrial applications 

could cause toxic effects in humans.
Myllynen, P. Nat. Nanotechnol., 2009, 4, 795-796. 

Kipen et al. Am  J Physiol Lung Cell Mol Physiol, 2005, 289, 696-697. 

Experimental,  toxicological  testing  of  MNPs is  costly  and  

time-consuming  and  could  thus  restrict  the  development  of  

newly designed particles.



At what dose do most MNPs start to be inducing toxic effects?

Main questions yet to be solved

Which MNPs are the most toxic?

What are the three most meaningful assays to determine

MNP-induced toxicological effects?

What effects are already known for this type of particles?

What are the nanomaterials to be tested first?

Are there correlations between the properties of MNPs and

their structural characteristics?

Compared to this given organic chemical, is a particular MNP 

more or less toxic at the same dose?



The importance of the DATA to enable

any informatics-dependent discipline: 

bioinformatics example

“Sequence data” vs. “bioinformatics 



“Chemical databases”  vs “chemoinformatics” or

“cheminformatics

The importance of the DATA to enable

any informatics-dependent discipline: 

cheminformatics example



• So far, three-four publications with enough 

data to build models

• Three-four computational modeling papers

• It is hard to collect and compile the data

The importance of the DATA to enable

any informatics-dependent discipline: 

nanotoxicoinformatics example



Lung adenocarcinoma

A549 cells

Pulskamp et al., Toxicol. 

Lett., 2007, 168, 58-74.

Several carbon MNPs (multi-

walled, single-walled, carbon 

black, quartz) increased 

Reactive Oxygen Species 

(ROS) and decreased 

mitochondrial membrane 

potential in a dose- and time-

dependent manner in rat 

macrophages and human A549

lung cells.

PVP coated silver nanoparticles were reported to

induce ROS and damage DNA in A549 cells depending

on their doses, as well as increase gap junctional

intercellular communication.

The A549 cell uptake of 

chitosan-modified PLGA 

nanospheres is time-, 

temperature-, and 

concentration-dependent, 

regulated by clathrin-mediated 

endocytosis. Low cytotoxicity

was reported for these modified, 

surface decorated nanospheres, 

suggesting them as preferable 

drug carriers for A549 cells. 

The authors demonstrated

the efficiency for lung cancer

treatment of nanodiamond

NPs carrying paclitaxel on

their surface: these NPs were

found (i) to reduce the A549

cell viability in vitro by

inducing both mitotic arrest

and apoptosis, and (ii)

blocked the tumor growth in

mice.

Tahara et al., Int. J. Pharm., 

2009, 382, 198-204.

Deng et al., Nanotoxicology., 2010, 4, 186-195.

Foldbjerg et al., Arch. Toxicol., 2010, In Press.

Liu et al., Nanotechnology,

2010, 21, 315106.

Challenges of 

data integration: 

an example of 

Lung A549 cells.



Lack of centralized data repository

Studies on MNP of different core structure, size, shape, and with 

various surface modifications have been reported but all published 

data are diverse, non-searchable, and spread among numerous 

sources of information.

Limits our capability to develop predictive tools to

assess nanotoxicity in advance of manufacturing

Severely limits the design of novel nanomaterials

that are environmentally benign and safe for human

exposure

Data depositories



To compile, curate and organize a specialized database 

incorporating all existing information on MNP including their 

physical/chemical properties and associated biological data 

emerging both from SRC research teams and scientific 

literature. 

Will highly benefit both experimentalists and modelers by 

enabling easily accessible, efficient data storage and in-

depth analysis/modeling of all reported experiments. 

Will facilitate research collaboration and data sharing 

between research teams; 

Will enable computational modeling by providing larger sets

of integrated and curated data;

Specific Aim 1 SRC White Paper 2011 / Tropsha group



Data sharing/storing format for nanomaterials

https://sites.google.com/site/cabignanowg/data-sharing-

and-nanotechnology-standards/nanotab

https://sites.google.com/site/cabignanowg/data-sharing-and-nanotechnology-standards/nanotab
https://sites.google.com/site/cabignanowg/data-sharing-and-nanotechnology-standards/nanotab
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https://sites.google.com/site/cabignanowg/data-sharing-and-nanotechnology-standards/nanotab
https://sites.google.com/site/cabignanowg/data-sharing-and-nanotechnology-standards/nanotab
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Data sharing/storing format for nanomaterials

Nano-

TAB

Investigation File

Study File

Material File 

Structure File (Optional)Assay File



Solving chemical and biological data curation issues

Similar

Issues

With 

Nanoparticles

Bioavailability data

(n = 220 organic molecules) 

Database 1

D
a
ta

b
a
s
e

2

Fourches, D.; Muratov, E.; Tropsha, A.

J. Chem. Inf. Model. 2010, 50, 1189-1204.
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Difficulties in Modeling of Nanomaterials

NP structures are very diverse a real challenge to develop 

quantitative parameters (descriptors) of MNPs. 

Systematic physico-chemical, geometrical, structural and biological 

studies of NPs are nearly absent.

Computational modeling of nanoparticles is only beginning to 

emerge; best if done in collaboration with experimental scientists.

S. Stern and S. McNeil, Toxicological Sciences, 101(1), 4-21, 2008.



Simplest view of QNAR 

progression
• Experimental Data

– Structure

– Activity

• Validated models of data

– Descriptors

– Statistical/machine learning techniques

• Imputed data

• Experimentally confirmed predictions

• Reliable models to enable decision 

support (both in research and regulations)

= pain

= gain



Structure representation in cheminformatics

naphtalen-1-amine

Viewed by

another molecule
Viewed by chemists

Viewed by

computers



Compounds are represented

by a matrix of molecular 

descriptors

Samples

(Compounds)

Variables (descriptors)

X1 X2 ... Xm

1 X11 X12 ... X1m

2 X21 X22 ... X2m

... ... ... ... ...

n Xn1 Xn2 ... Xnm



Molecular fingerprints - bit string encodings of structural features

and/or calculated molecular properties.



Molecular Fingerprints

From J. Bajorath, SSS Cheminformatics, Obernai 2008

each bit position monitors



Similarity Search

From J. Bajorath, SSS Cheminformatics, Obernai 2008

Similarity searching using fingerprint representations of

molecules is one of the most widely used approaches for

chemical database mining: it assumes that similar compounds

possess similar biological activities.

Tanimoto Coefficient



ALL PARTICLES HAVE THE SAME CORE

BUT DIFFERENT SURFACE MODIFIERS

Classical molecular descriptors 

(e.g., Dragon, MOE, SiRMS) can be 

computed for a single molecule 

that represents the surface of a 

particular nanoparticle.



ALL PARTICLES HAVE DIFFERENT

CORES/ARCHITECTURES

Shaw et al., PNAS, 2008, 105, 7387-7392

If no available three-dimensional 

structures, only constitutional descriptors 

(e.g., number of metal atoms, presence/ 

absence of coated dextran) are 

computationally accessible.

Need of developing new 

descriptors

Development of Quantum-Mechanics 

based fingerprints for thousands of

nanomaterials in collaboration with Dr. 

Stefano Curtarolo (Duke University)
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Workflow for MNP risk assessment

“in silico”

modeling



Fourches D, Pu D, Tropsha A. Comb Chem High Throughput Screen. 2011 Jan 26. [Epub ahead of print]



2010 Oct 26;4(10): 5703-12. 
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MML - k Nearest Neighbors (kNN) method



Support Vector Machine (SVM)

Introduced by Vapnik (1995), the SVM approach identifies the best linear separation

between two classes of data. In a multidimensional descriptor space, such separation is

realized by a hyperplane leading to the best linear segregation between data in the

feature space.

What is the feature space ?

Descriptor 1

Descriptor 2

Descriptor space : no linear separation

between data points.

Feature space : linear separation

exists.

Kernel

Function

(Ex: x2, y2 )



Support Vector Machine (SVM)

The SVM algorithm tend to maximize the margin around the

hyperplane separating the two class of compounds. Different kernel

functions and parameters have to be optimized (grid search) in order

to identify the best models.

Support vectors



Multiple
Test
Sets

Y-randomization

Combi-QSAR
Modeling

Activity
Prediction

Only accept 
models 

that have  
Q2 > 0.6
R2 > 0.6

etc.
External validation
Using Applicability

Domain

Split into
Training, Test
and External

Validation 
sets

Experimental
Validation

Database
Screening Using

Applicability
Domain

Validated Predictive
Models with High 

Internal & External 
Accuracy

*Tropsha, A. Best Practices for QSAR Model Development, Validation,

and Exploitation Mol. Inf., 2010, 29, 476 – 488

CHEMBENCH.MML.UNC.EDU

Predictive QSAR Modeling Workflow*

Original 
Dataset

Multiple
Training

Sets



3. Application of the Quantitative Structure Activity Relationships 

(QSAR) approach to modeling of nanomaterials

4. Proof-of-concept: Computer aided design of carbon nanotubes

with the desired bioactivity and safety profiles

Outline: From data to models to 

computer-aided design

1.Data Accumulation: Need to establish an integrated database of 

nanomaterials’ structure and properties

2. Data modeling and nano-informatics: Need to develop new 

descriptors for nanomaterials



In 2008, Zhou et al* published in vitro protein binding, acute toxicity and immune

toxicity assays for 84 Carbon NanoTubes (CNTs) decorated with different surface

modifiers.

Different surface

modifiers were

introduced at the

R1, R1’ and R2

position

*Zhou et al. Nano Lett., Vol. 8, No. 3, 2008 

84 CNTs Tested in 
Two Different 

Types of Assays

Protein 
Binding

Bovine 
Serum 

Albumin

Carbonic 
Anhydrase

Chymotripsin Hemoglobin

Toxicity

Acute 
Toxicity

Immune 
Toxicity

BSA CA CT HB

Case Study 3: Modeling of NPs for Protein Binding



34

Cluster1: high binding affinities

Cluster2: low binding affinities

high 

lowBSA CA CT HB

Clustering Uncovers Common 

Fragments with Distinct Protein 

Binding Profile. 

NP ID
BSA 

Binding
CA Binding CT Binding HB Binding

AMOO7AC001 4.0302 4.9276 3.5868 3.3936

AMOO7AC002 4.4012 4.6517 3.5818 4.2787

AMOO7AC003 8.5565 4.4131 4.4598 3.9182

AMOO7AC005 3.0478 0.7487 0.7748 0.3953

AMOO7AC001 AMOO7AC002

AMOO7AC003 AMOO7AC005

AMOO1AC005 AMOO3AC005 AMOO4AC005

AMOO5AC005 AMOO6AC005

Case Study 3: Binding profiles sorted according to non-supervised 

hierarchical clustering of 84 NPs using chemical descriptors



Case Study 3: QNAR Modeling of 

Carbonic Anhydrase Binding
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Each CNT is represented by a single copy of its surface molecule.

Consensus modeling approach combining different machine learning 

methods (k Nearest Neighbors, Support Vector Machines and Random 

Forest) and different types of chemical descriptors (Dragon and MOE).



kNN-Dragon SVM-Dragon RF-Dragon kNN-MOE SVM-MOE RF-MOE

F1

Sens. 0.70 0.70 0.70 0.70 0.70 0.70

Spec. 0.83 0.83 0.83 0.83 0.67 0.83

Accr. 0.75 0.75 0.75 0.75 0.69 0.75

F2

Sens. 0.80 0.60 0.80 0.80 0.70 0.80

Spec. 1.00 1.00 1.00 1.00 0.67 1.00

Accr. 0.88 0.75 0.88 0.88 0.69 0.88

F3

Sens. 0.88 0.75 0.75 0.50 0.63 0.75

Spec. 0.63 0.44 0.75 0.63 0.50 0.50

Accr. 0.75 0.63 0.75 0.56 0.56 0.63

F4

Sens. 0.86 0.86 0.86 0.86 0.86 0.43

Spec. 0.67 0.56 0.67 0.67 0.44 0.67

Accr. 0.75 0.69 0.75 0.75 0.63 0.56

F5

Sens. 0.63 0.63 0.63 0.63 0.50 0.63

Spec. 0.64 0.64 0.55 0.45 0.64 0.55

Accr. 0.63 0.63 0.58 0.53 0.58 0.58

Total

Sens. 0.77 0.70 0.74 0.70 0.67 0.67

Spec. 0.73 0.68 0.73 0.68 0.58 0.68

Accr. 0.75 0.69 0.73 0.69 0.63 0.67

Case study 3: QNAR Modeling of CA Binding



Case Study 3: Computer-aided design of novel carbon 

nanotubes with desired biological properties
(in collaboration with Dr. Bing Yan, St. Jude Children's Research Hospital)

Similarity Search

VIRTUAL 

SCREENING
~102

molecules

Consensus QSAR models

462 

molecules

240,000 in silico

designed small 

molecules which 

are considered 

attachable

to CNTs

110 molecules

QNAR Predictions
CA non-binders

189 molecules

Non-toxic
Experimental

Validation



Experimental Validation (Toxicity assay)

ID

Cell Viability (%)= 100 × treatment / control (percentage)

Average STDEV

Rep1 Rep2 Rep3 Rep4

II-1 (1831) 55 53 60 63 58 5

II-2 (48660) 57 62 62 63 61 3

II-3 (1860) 61 65 59 60 61 3

II-4 (13031) 53 54 61 57 56 3

II-5 (11236) 57 58 61 57 58 2

II-6 (153907) 79 65 61 56 65 10

II-7 (153852) 73 72 66 62 68 6

II-8 (39260) 67 67 70 82 72 7

II-9 (13860) 72 67 66 67 68 3

II-10 (48636) 54 53 63 65 59 6

Hits that were predicted as non-toxic

All rationally prioritized, synthesized, 

and tested CNTs predicted as non-toxic 

were confirmed experimentally.



ID

Cell Viability (%)= 100 × treatment / control (percentage)

Average STDEV

Rep1 Rep2 Rep3 Rep4

II-11 (170243) 38 29 38 52 39 9

II-12 (170217) 49 50 38 58 49 8

II-13 (170226) 39 43 48 54 46 7

II-14 (141618) 44 46 53 54 49 5

II-15 (126818) 50 43 63 51 52 8

II-16 (154018) 44 49 47 24 41 11

II-17 (4218) 44 51 54 56 51 5

II-18 (135817) 41 44 53 60 49 9

II-19 (120618) 47 43 66 62 55 11

II-20 (135018) 40 43 59 60 50 10

Experimental Validation (Toxicity assay)

Hits that were predicted as toxic

6 out of 10 rationally prioritized, 

synthesized, and tested CNTs predicted 

as toxic were confirmed experimentally



Our results demonstrate that QNAR models can successfully

predict the biological effects of MNPs from their descriptors

either experimentally measured or calculated.

Selected nanotubes decorated by the ligands identified with

the help of QNAR models were experimentally synthesized

and successfully validated. This study reports the first case of

a rational design of carbon nanotubes possessing desired

properties.

QNAR models can be used to design new MNPs with

appropriate bioactivity and safety profiles.

Conclusions



Needs

• (side note: the technology to build models

is in place: 50 years of QSAR!)

• Sufficiently large datasets 

Both the core and the surface are varied systematically to 

dissect their relative effects on biology. 

• NP-specific descriptors 

– easy for surface modifiers (unless there are non-linear 

core/surface modifier effects); 

– non-existent for the core (except maybe, QM calculations 

and MD-simulations derived?)

– QSPR should precede QNAR

• Joint (e.g., virtual collaboratory) projects between 

computational and experimental teams



• Relationships between in vitro and in vivo responses?

Interplay between the structure of the core and that of

surface modifiers as it affects toxicity?

• Greater understanding of the relationship between structure

and physical properties of NPs (to impute the latter)

Much greater effort is needed to generate designed datasets

for focused QNAR investigations.

Urgent need to develop ontology and integrated databases of

structure and physical and biological properties of NPs

More questions and challenges than 

answers and solutions (good for science!)
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