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Outline: From data to models to
computer-aided design

1. Data Accumulation: Need to establish an integrated database of
nanomaterials’ structure and properties

2. Data modeling and nano-informatics: Need to develop new
descriptors for nanomaterials

3. Application of the Quantitative Structure Activity Relationships
(QSAR) approach to modeling of nanomaterials

4. Proof-of-concept: Computer aided design of carbon nanotubes
with the desired bioactivity and safety profiles



S

i

® ~-1000 manufacturer-identified nanotechnology-based
consumer products currently on the market

(Woodrow Wilson International Center for Scholars, 2008).

Recent boost due in part to the application of combinatorial

chemistry and high throughput screening to design novel
Manufactured NanoParticles (MNPs)

® Growing public concern about the safety of MNPs since it has
been demonstrated that MNPs intended for industrial applications

could cause toxic effects in humans.
Myllynen, P. Nat. Nanotechnol., 2009, 4, 795-796.

Kipen et al. Am J Physiol Lung Cell Mol Physiol, 2005, 289, 696-697.

Experimental, toxicological testing of MNPs is costly and

time-consuming and could thus restrict the development of
newly designed particles. l

Development of predictive « in silico » approaches




Main questions yet to be solved

Which MNPs are the most toxic?

rmine

What are the three most meaningful assays _ N}
. . . 2
MNP-induced toxicological effects? «?‘

What effects are already known for this * 60 .dcles?

Compared to this given organic e« 1S a particular MNP
more or less toxic at the s~

W” &e < hanomaterials to be tested first?

Are there - ,‘ .5 between the properties of MNPs and
| .aracteristics?

their <
©

At what dose do most MNPs start to be inducing toxic effects?



The importance of the DATA to enable

any informatics-dependent discipline:
bioinformatics example

Go .-glt‘;' labs Books Ngram Viewer

Graph these case-sensitive comma-separated phrases: sequence data,bioinformatics
between 1950 and 2008 from the corpus English > with smoothing of 3~ _
| Searchlots of books |

Sequence data” vs. “bioinformatics

Search in Google Books:




The importance of the DATA to enable
any informatics-dependent discipline:
cheminformatics example

Go .-glt_‘ labs Books Ngram Viewer

Graph these case-sensitive comma-separated phrases: cheminformatics,chemoinformatics,chemical databases
between 1950 and 2008 from the corpus English ~ with smoothingof 3~ .
| Searchlots of books |

“Chemical databases” vs ‘chemoinformatics” or
“cheminformatics

Search in Google Books:

&

& Internet | Protected Mode:




The importance of the DATA to enable
any informatics-dependent discipline:
nanotoxicoinformatics example

» So far, three-four publications with enough
data to build models

* Three-four computational modeling papers
* |tis hard to collect and compile the data



Pulskamp et al., Toxicol.
Lett., 2007, 168, 58-74.

Several carbon MNPs (multi-
walled, single-walled, carbon
black, quartz) increased
Reactive Oxygen Species
(ROS) and decreased
mitochondrial membrane
potential in a dose- and time-
dependent manner in rat
macrophages and human A549
lung cells.

Tahara et al., Int. J. Pharm.,

2009, 382, 198-204.

The A549 cell uptake of
chitosan-modified PLGA
nanospheres is time-,
temperature-, and
concentration-dependent,
regulated by clathrin-mediated
endocytosis. Low cytotoxicity
was reported for these modified,
surface decorated nanospheres,
suggesting them as preferable
drug carriers for A549 cells.

Challenges of
data integration:
an example of
Lung A549 cells.

Lung adenocarcinoma
A549 cells

UNC.EDU

Liu et al., Nanotechnology,
2010, 21, 315106.

The authors demonstrated
the efficiency for lung cancer
treatment of nanodiamond
NPs carrying paclitaxel on
their surface: these NPs were
found (i) to reduce the A549
cell wviability in vitro by
inducing both mitotic arrest
and apoptosis, and (i)
blocked the tumor growth in
mice.

Deng et al., Nanotoxicology., 2010, 4, 186-195.
Foldbjerg et al., Arch. Toxicol., 2010, In Press.

PVP coated silver nanoparticles were reported to
induce ROS and damage DNA in A549 cells depending
on their doses, as well as increase gap junctional
intercellular communication.




Data depositories

Studies on MNP of different core structure, size, shape, and wi
various surface modifications have been reported but all published
data are diverse, non-searchable, and spread among numerous
sources of information.

mm) | ack of centralized data repository

mmm) Limits our capability to develop predictive tools to
assess nanotoxicity in advance of manufacturing

mm) Scverely limits the design of novel nanomaterials
that are environmentally benign and safe for human
exposure




Specific Aim 1 SRC White Paper 2011 / Tropsha group

To compile, curate and organize a specialized database
incorporating all existing information on MNP including their
physical/chemical properties and associated biological data

emerging both from SRC research teams and scientific
literature.

Will facilitate research collaboration and data sharing
between research teams;

Will enable computational modeling by providing larger sets
of integrated and curated data;

HWiII highly benefit both experimentalists and modelers by
enabling easily accessible, efficient data storage and in-

depth analysis/modeling of all reported experiments.



Data sharing/storing format for nanomaterials

Manotechnology data sharing and standards =

nano-TAB

nano-TAB is a tab-delimited spreadsheet type of format facilitating the submission and exchange of data pertaining to

nanomaterials and their characterizations (physico-chemical, in vitro, and in vivo). nano-TAB is based on existing standards developed by the
European Bioinformatics Institute (EBI) and the Investigation/Study/Assay (ISA-TAB) file format, which represents a variety of assays and
technology types. The nano-TAB specification leverages ISA-TAB files describing investigations, studies, and assays and provides
extensions to support nanomaterial structural information and concepts on nanotechnology assay measurements defined in the NanoFarticle
Ontology (NPO)

The goals of nano-TAB are to

s Enable the submission and exchange of nanomaterials to/from nanotechnology resources
= Empower organizations to adopt standards for representing data in nanotechnology publications, and
s Provide researchers with guidelines for representing nanomaterials and characterizations to achieve cross-material comparison

The nano-TAB project is a sub-group of the caBlG Nano WG and has been assisted in clo Sample Identifiers Protocol Reference
Representation (IR) Waorking Group (WG). The nano-TAB project is a collaborative effort w
registered ASTM Work ltem WKZ8974. Links to key nano-TAB artifacts are provided belo

nano-TAB Overview Presentation (this is the best starting place to learn about
nano-TAB Specification [DRAFT]
nano-TAB Template
nano-TAB Template Glossary
nano-TAB Example Files
= NCL Dendrimer MRI Constrast Agent
= MBI AU MNanoparticle
nano-ML (nanc-TAB XML Representation)
= nano-ML XML Schema

Assay Files
——

STANDARDIZED
d3ZIadvanvis

= nano-ML Example File

nano-TAB project meeting presentations, minutes and other files on the nano-TAB develop Datéll\lspe(ﬂﬁ;'_lé?rles

i 1.ni -.,-_." _.'" ¢ "' =R id=RR5
http-f/gforge ncinih gow/docmanfindex php?group _id=69&selected doc_group id=56538&13 NCL (NCI, FDA, NIST)
NBI (ONAMI)

InterNano (NNN)
NIL (NIOSH)



https://sites.google.com/site/cabignanowg/data-sharing-and-nanotechnology-standards/nanotab
https://sites.google.com/site/cabignanowg/data-sharing-and-nanotechnology-standards/nanotab
https://sites.google.com/site/cabignanowg/data-sharing-and-nanotechnology-standards/nanotab
https://sites.google.com/site/cabignanowg/data-sharing-and-nanotechnology-standards/nanotab
https://sites.google.com/site/cabignanowg/data-sharing-and-nanotechnology-standards/nanotab
https://sites.google.com/site/cabignanowg/data-sharing-and-nanotechnology-standards/nanotab
https://sites.google.com/site/cabignanowg/data-sharing-and-nanotechnology-standards/nanotab
https://sites.google.com/site/cabignanowg/data-sharing-and-nanotechnology-standards/nanotab
https://sites.google.com/site/cabignanowg/data-sharing-and-nanotechnology-standards/nanotab
https://sites.google.com/site/cabignanowg/data-sharing-and-nanotechnology-standards/nanotab
https://sites.google.com/site/cabignanowg/data-sharing-and-nanotechnology-standards/nanotab

Data sharing/storing format for nanomaterials
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Solving chemical and biological data curation issues
I _ —— |

© - -
Removal of mixtures, inorganics 1
(and eventually organometallics) I
__________________ TR pa—— Fourches, D.; Muratov, E.; Tropsha, A.
Cleaning/removal of salts ~ J. Chem. Inf. Model. 2010, 50, 1189-1204. I
.................. Normalization of
o specific chemotypes
.................. Treatment of
tautomeric forms
_________________ Analysis/removal of duplicates i .
Bioavailability data Similar
................. Manual inspection .
(n = 220 organic molecules) Issues
100 e TWOMBAT) 3 r—
CURATED DATASET 90 1 N
e 1 7 With
v ’ .
" g vt T W] I Nanoparticles
60 4 ..CE 'Y ¢
0 I
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Outline: From data to models to
computer-aided design

1. Data Accumulation: Need to establish an integrated database of
nanomaterials’ structure and properties

2. Data modeling and nano-informatics: Need to develop new
‘descriptors for nanomaterials

3. Application of the Quantitative Structure Activity Relationships
(QSAR) approach to modeling of nanomaterials

4. Proof-of-concept: Computer aided design of carbon nanotubes
with the desired bioactivity and safety profiles



Difficulties in Modeling of Nanomaterials

Diesel Exhaust Particles Fullerene Nanotubes Dendrimers Quantum Dots

Incidental Nanoparticles Engineered Nanoparticles
S. Stern and S. McNeil, Toxicological Sciences, 101(1), 4-21, 2008.

e NP structures are very diverse - a real challenge to develop
guantitative parameters (descriptors) of MNPs.

® Systematic physico-chemical, geometrical, structural and biological
studies of NPs are nearly absent.

e Computational modeling of nanoparticles is only beginning to
emerge; best if done in collaboration with experimental scientists.



Simplest view of QNAR

progression
« Experimental Data
— Structure
— Activity
 Validated models of data
— Descriptors
— Statistical/machine learning technigues

* Imputed data

* Experimentally confirmed predictions
= gain




Structure representation in cheminformatics

naphtalen-1-amine

Viewed by
computers

Viewed by Viewed by chemists
another molecule



Compounds are represented!t

by a matrix of molecular

descriptors
Samples Variables (descriptors)
(Compounds) [ x. X, X,
1 X11 X15 Xim
2 X1 Xos Xom




Molecular fingerprints - bit string encodings of structural features
and/or calculated molecular properties.

N
)\ N
o E v NH q

~/ molecular fingerprint



Molecular Fingerprints

m 2D Fragment-based, keyed fingerprints: each bit position monitors
the presence or absence of structural fragments
(166 bits), (e.g. 1,052 bits)

~N_ .~

m 2D Hashed designs: /
Map different features (e.g. connectivity pathways) to <4 o

overlapping bit segments \N
(usually 2,048 bits) l @

Pathways: O=CNC, ..., CCN=CC=CCl

From J. Bajorath, SSS Cheminformatics, Obernai 2008



Similarity Search

Similarity searching using fingerprint representations of

molecules is one of the most widely used approaches for

chemical database mining: it assumes that similar compounds
possess similar biological activities.

reference

molecule(s) ' \R‘
| EEEE E  EEES 5§ s s = sss_ sslpf
| EN BN N B EEE N mEEs = smunm_ snjp.

/ * * * k Kk k * k ok ok * Kk Kk k * *

Tanimoto Coefficient

similarity . cC
assessment Te(Xa.Xg) = a+r—o

ranked list of database molecules \

"<><>u DQQQO-ALL

0.95 08 08 0.75 0.7 0.7 05 05 04 03 0.05 0.05

From J. Bajorath, SSS Cheminformatics, Obernai 2008



ALL PARTICLES HAVE THE SAME CORE
BUT DIFFERENT SURFACE MODIFIERS

T i : s
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" compounds

Computational
Descriptors
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Classical molecular descriptors
(e.g., Dragon, MOE, SIRMS) can be
computed for a single molecule
that represents the surface of a
particular nanoparticle.
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. | | mE = .

ALL PARTICLES HAVE DIFFERENT
CORES/ARCHITECTURES |

MW (L0 PN MION QD FeridexIV

(L]

Ferrum
Hausmann

aptck 0 19 4 3 1
Shaw et al., PNAS, 2008, 105, 7387-7392

If no available three-dimensional
structures, only constitutional descriptors
(e.g., number of metal atoms, presence/
absence of coated dextran) are
computationally accessible.

$

Need of developing new
descriptors

$

Development of Quantum-Mechanics
based fingerprints for thousands of
nanomaterials in collaboration with Dr.
Stefano Curtarolo (Duke University)
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Outline: From data to models to
computer-aided design

1.Data Accumulation: Need to establish an integrated database of
nanomaterials’ structure and properties

2. Data modeling and nano-informatics: Need to develop new
descriptors for nanomaterials

3. Application of the Quantitative Structure Activity Relationships
(QSAR) approach to modeling of nanomaterials

4. Proof-of-concept: Computer aided design of carbon nanotubes
with the desired bioactivity and safety profiles



Workflow for MNP risk assessment

L IC I JC I

Molecular weight,
compositions and
geometrical
parameters,
physico-chemical
properties (acidic,
basic, neutral,
amphi- or lipophilic

rrirrrrirrrrirrierire
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etc.) 3

- Molecular properties
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Human health risk
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Toxicity testing |
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Biological Descriptors

“in silico”
modeling
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ACS Publications

MOST TRUSTED. MOST CITED. MOST READ.

2010 Oct 26;4(10): 5703-12.

Quantitative Nanostructure— Activity
Relationship Modeling

Denis Fourches,” Dongqiuye Pu," Carlos Tassa,* Ralph Weissleder,” Stanley Y. Shaw,” Russell J. Mumper,5

and Alexander Tropsha™*

fLaboratory of Molecular Modeling, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, 'Center for Systems Biolagy,
Massachusetts General Hospital, Boston, Massachusetts 02114, and *Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North

Carolina, Chapel Hill, North Carolina 27599

ore than 1000 manufacturer-

identified, nanotechnology-

based consumer products are
currently available on the market (The Woo-
drow Wilson International Center for Schol-
ars, 2010). A growing fraction of them repre-
sent green products intended to achieve
efficient and less polluting energy sources.’
However, some manufactured nanoparti-
cles (MNPs) intended for industrial applica-
tions may cause toxic effects in humans,®*
and public concern about the safety of

ABSTRACT Evaluation of biological effects, both desired and undesired, caused by manufactured nanoparticles
(MNPs) is of critical importance for nanotechnology. Experimental studies, especially toxicological, are time-
consuming, costly, and often impractical, calling for the development of efficient computational approaches
capable of predicting biological effects of MNPs. To this end, we have investigated the potential of
cheminformatics methods such as quantitative structure—activity relationship (QSAR) medeling to establish
statistically significant relationships between measured biological activity profiles of MNPs and their physical,
chemical, and geometrical properties, either measured experimentally or computed from the structure of MNPs.
To reflect the context of the study, we termed our approach quantitative nanostructure —activity relationship
(QNAR) modeling. We have employed two representative sets of MNPs studied recently using in vitro cell-based
assays: (i) 51 various MNPs with diverse metal cores (Proc. Natl. Acad. Sci. 2008, 105, 7387 —7392) and (ii) 109 MNPs




MML - k Nearest Neighbors (kNN) method
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Variable Selection Algorithm ‘

- Subset of descriptors
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Support Vector Machine (SVM)

Introduced by Vapnik (1995), the SVM approach identifies the best linear separation
between two classes of data. In a multidimensional descriptor space, such separation is
realized by a hyperplane leading to the best linear segregation between data in the

feature space. _
What is the feature space ?
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]
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Descriptor space : no linear separation Feature space : linear separation

between data points. exists.



Support Vector Machine (SVM)

The SVM algorithm tend to maximize the margin around the
hyperplane separating the two class of compounds. Different kernel
functions and parameters have to be optimized (grid search) in order
to identify the best models.

Descriptor space Feature space

1.0

0.8 1

0.6 -

0.4

Support vector
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Original

Dataset Multiple

Training
Sets

Split into
Training, Test

Combi-QSAR

and External Modeling

Validation
sets

Multiple Activity

Test Prediction
Sets Only accept

models
Database that have
. : 2
Screen.mg 9,5'“g - Validated Predictive Q2 =06
Applicability External validation Mledtes vl Bl R?>0.6
Domain Using Applicability internal & External etc.
' bomain Accuracy
Experimental *Tropsha, A. Best Practices for QSAR Model Development, Validation,
Validation and Exploitation Mol. Inf., 2010, 29, 476 — 488

CHEMBENCH.MML.UNC.EDU



Outline: From data to models to
computer-aided design

1.Data Accumulation: Need to establish an integrated database of
nanomaterials’ structure and properties

2. Data modeling and nano-informatics: Need to develop new
descriptors for nanomaterials

3. Application of the Quantitative Structure Activity Relationships
(QSAR) approach to modeling of nanomaterials

4. Proof-of-concept: Computer aided design of carbon nanotubes
with the desired bioactivity and safety profiles



Case Study 3: Modeling of NPs for Protein Bindin

In 2008, Zhou et al” published in vitro protein binding, acute toxicity and immune
toxicity assays for 84 Carbon NanoTubes (CNTSs) decorated with different surface

modifiers.

Protein
Binding

Bovine g

Carbonic .
Serum Chymaotripsin
Al Anhydrase
BSA CA CT

*Zhou et al. Nano Lett., Vol
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Case Study 3: Binding profiles sorted according to non-su

hierarchical clustering of 84 NPs using chemical descriptors

AMOO7AC001 AMOO7AC002

= o)
o™

o™

Clustering Uncovers Common

Fragments with Distinct Protein E ﬁ@k© %oi©
Binding Profile.

h ig h AMOO7AC003 AMOO7AC005
O

O
H o9 @Ao/\ C'@ H O ©)Lo’\
m N TfN N
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Binding C* Binding CT Binding HB Binding

AMOO7AC001 4.0302 4.9276 3.5868 3.3936
AMOO7AC002 4.4012 4.6517 3.5818 4.2787
AMOO7AC003  8.5565 4.4131 4.4598 3.9182
AMOO7AC005 3.0478 0.7487 0.7748 0.3953

_===>Clusterl: high binding affinities

Cluster2: low binding affinities
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Case Study 3: ONAR Modeling of

Carbonic Anhydrase Binding

Non-Binders Binders

e e o
A OO ©

—

[0.53, [LOL, [L48, [L96, [243, [2.91, [3.39, [3.86, [4.34, [4.8L,
1.01) 1.48) 1.96) 243) 291) 3.39) 3.86) 4.34) 481) 5.29)

Carbonic Anhydrase Binding

Threshold

Number of CNTs
5

o N b O

Each CNT is represented by a single copy of its surface molecule.
Consensus modeling approach combining different machine learning

methods (k Nearest Neighbors, Support Vector Machines and Random
Forest) and different types of chemical descriptors (Dragon and MOE).




kNN-Dragon SVM-Dragon  RF-Dragon kNN-MOE SVM-MOE RF-MOE

Sens. 0.70 0.70 0.70 0.70 0.70 0.70
F1 Spec. 0.83 0.83 0.83 0.83 0.67 0.83
Accr. 0.75 0.75 0.75 0.75 0.69 0.75
Sens. 0.80 0.60 0.80 0.80 0.70 0.80
F2 Spec. 1.00 1.00 1.00 1.00 0.67 1.00
Accr. 0.88 0.75 0.88 0.88 0.69 0.88
Sens. 0.88 0.75 0.75 0.50 0.63 0.75
F3 Spec. 0.63 0.44 0.75 0.63 0.50 0.50
Accr. 0.75 0.63 0.75 0.56 0.56 0.63
Sens. 0.86 0.86 0.86 0.86 0.86 0.43
F4 Spec. 0.67 0.56 0.67 0.67 0.44 0.67
Accr. 0.75 0.69 0.75 0.75 0.63 0.56
Sens. 0.63 0.63 0.63 0.63 0.50 0.63
F5 Spec. 0.64 0.64 0.55 0.45 0.64 0.55
Accr. 0.63 0.63 0.58 0.53 0.58 0.58
Sens. 0.77 0.70 0.74 0.70 0.67 0.67
Total  Spec. 0.73 0.68 0.73 0.68 0.58 0.68
Accr. 0.75 0.69 0.73 0.69 0.63 0.67
N P —




Case Study 3: Computer-aided design of novel carbon

nanotubes with desired biolo roperties

in collaboration with Dr. Bing Yan, St. Jude Children's Research Hospital
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Experimental Validation (Toxicity assay)

il MML
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Hits that were predicted as non-toxic

Cell Viability (%)= 100 * treatment / control (percentage)
ID Average STDEV
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All rationally prioritized, synthesized,
and tested CNTs predicted as non-toxic
were confirmed experimentally.
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Experimental Validation (Toxicity assay)

Hits that were predicted as toxic

Cell Viability (%)= 100 x treatment / control (percentage)
ID Average  STDEV
Repl Rep2 Rep3 Rep4

79 38

_ . e X4, ,
6 out of 10 ratlonally prlorltlzed

synthesized, and tested CNTs predicted
as toxic were conflrmed experlmentally
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Conclusions

® Our results demonstrate that QNAR models can successfully
predict the biological effects of MNPs from their descriptors
either experimentally measured or calculated.

® Selected nanotubes decorated by the ligands identified with
the help of QNAR models were experimentally synthesized
and successfully validated. This study reports the first case of
a rational design of carbon nanotubes possessing desired
properties.

® ONAR models can be used to design new MNPs with
appropriate bioactivity and safety profiles.




Needs

(side note: the technology to build models
IS In place: 50 years of QSAR!)

Sufficiently large datasets

Both the core and the surface are varied systematically to
dissect their relative effects on biology.

NP-specific descriptors

— easy for surface modifiers (unless there are non-linear
core/surface modifier effects);

— non-existent for the core (except maybe, QM calculations
and MD-simulations derived?)

— QSPR should precede QONAR

Joint (e.g., virtual collaboratory) projects between
computational and experimental teams




More questions and challenges than
answers and solutions (good for suence')

® Relationships between in vitro and in vivo responses?

® |nterplay between the structure of the core and that of
surface modifiers as it affects toxicity?

® Greater understanding of the relationship between structure
and physical properties of NPs (to impute the latter)

® Much greater effort is needed to generate designed datasets
for focused QNAR investigations.

e Urgent need to develop ontology and integrated databases of
structure and physical and biological properties of NPs
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