

Cytotoxic effects of engineered nanoparticles at the bio-nano interface

Presenter: Dr. Wen Zhang PI: Dr. Yongsheng Chen

yongsheng.chen@ce.gatech.edu

November 3 2011

School of Civil and Environmental Engineering

Atomic Scale

 is the size of an atom

Atom

10-11 -

10-12 -

High specific surface area
 High reactivity
 High transportability
 More.....

Figure 1.1. Representation of the interface between a nanoparticle and an intact lipid bilayer representative of a cell surface. Various environmental factors, particle properties, and their interrelationships are depicted. Credit: Wen Zhang. PhD thesis, Georgia Tech. 2011

What could

happen to NPs at biological interface?

Adsorption
Specific (ligand/receptor) and non-specific interactions
Disruption (e.g., physical and chemical damage)
Permeation/penetration

My research outline

Some of the key findings on adsorption kinetics and the associated cellular impairments

Wen Zhang, Bruce Rittmann, and Yongsheng Chen. Size effects on adsorption kinetics of hematite NPs on *E. coli* cells. *Environmental Science and Technology*, 2011, 45 (6), 2172-2178.

Surface disruption to bacteria (*E. coli*) after exposure to hematite NPs

Wen Zhang, Joseph B Hughes, and Yongsheng Chen. Impacts of Hematite Nanoparticle Exposure on Biomechanical and Surface Electrical Properties of E. coli Cells. *Applied environmental microbiology (AEM)*, submitted.

Surface disruption to human intestinal cells (Caco-2) after exposure to hematite NPs

Before exposure

After exposure

 Microville disruption, membrane penetration, and adheren junction disruption.
 Possibly interpreted by depletion attraction.

Wen Zhang, Madhavi Kalive, David G Capco, and Yongsheng Chen, Adsorption of hematite nanoparticles onto Caco-2 cells and the cellular impairments: effect of particle size. *Nanotechnology* 2010, 21, 355103.

Mechanisms of surface disruption from a physical perspective: Fe₂O₃ vs *E. coli*

To better understand and interpret nanotoxicity test results:

Mechanisms of surface disruption from a physical perspective: Fe₂O₃ vs *E. coli*

(a) TEM image of hematite (α -Fe₂O₃) NPs with inset of SAED pattern; (b) AFM image of aggregated clusters of hematite NPs; (c) Crystal structure of hematite NPs; and (d) The size distribution

Several important features of hematite (reasons of choosing it in the test)

 ✓ Good reference nanomaterial
 ✓ Good aqueous stability
 ✓ Relatively uniform size distribution
 ✓ No toxic metal release (good chemical stability or chemically inert)

lec

Mechanisms of surface disruption from a physical perspective: Fe₂O₃ vs *E. coli*

Reprehensive morphology of *E. coli* cells

Several important advantages by using *E. coli* as a cell target

✓ One of the basic and representative
 Gram-negative bacterial form that
 mirrors most of the bacterial properties
 ✓ Rapid toxicity screening relative to
 human cell lines

 ✓ A representative microorganism widely used in nanotoxicity tests
 ✓ Commonly used experimentally in molecular biology

✓ Comprehensive knowledge of gene library that allows us to conduct future genetic level studies

1. Morphology changes of *E. coli* after exposure to hematite NPs

E. coli cells with a few hematite NPs (white dots) attached

E. coli cells with heavy adsorption of hematite NPs and aggregated clusters

Deformed *E. coli* cells after long time exposure to hematite NPs

eorgia Tech

Wen Zhang, Joseph B Hughes, and Yongsheng Chen. Impacts of hematite nanoparticle exposure on biomechanical and surface electrical properties of *E. coli* cells. *Applied Environmental Microbiology*, Submitted.

1. Morphology changes of *E. coli* after exposure to hematite NPs

Wen Zhang, Joseph B Hughes, and Yongsheng Chen. Impacts of hematite nanoparticle exposure on biomechanical and surface electrical properties of *E. coli* cells. *Applied Environmental Microbiology*, Submitted.

2. Biomechanical property changes of *E. coli* cells at local scale

The illustrations are not drawn to scale.

Wen Zhang, Joseph B Hughes, and Yongsheng Chen. Impacts of hematite nanoparticle exposure on biomechanical and surface electrical properties of *E. coli* cells. *Applied Environmental Microbiology*, Submitted.

Force measurement by AFM.

The resulting force-distance curves can be used to estimate surface hardness, elasticity, and adhesiveness.

Hardness is indicated by the indentation of the tip engaged with the sample surface

Elasticity is measured by spring constant of the cell

Adhesiveness is directly reflected by the adhesion force between the tip and the cell surface

Georgia

2. Biomechanical property changes of *E. coli* cells at local scale

Force-distance curves as the tip approached and retracted from the contact with sample surfaces at a maximum loading force of approximately 4 nN (averaged from 6-20 replicates).

>Intact *E. coli* cells had indentation 250–450 nm, which is dependent on accurate estimation of the contact point; impaired cells only had an average indentation of 120 nm.

No adhesion on intact untreated cells, whereas large adhesion was detected on treated cells **Georgia**

2. Biomechanical property changes of *E. coli* cells at local scale

The spring constant of the cell (k_b) can be calculated using the equation: $k_b = k_c s / (1-s)$

where k_c is the spring constant of the cantilever and *s* is the slope in the linear compliant region of the force-distance curve.

 Table 1 Summary of spring constants for untreated and hematitetreated *E. coli* cells.

	Cantilever spring	Slope	Spring constant of the
	constant, k_c , (nN/nm)	(nm/nm)*	cells, k_b , (nN/nm)
Untreated <i>E. coli</i> cells	0.02 ± 0.01	0.307 ± 0.02	0.013
Hematite-treated <i>E. coli</i> cells	0.05±0.01	0.904 ± 0.02	0.283 → Less elastic

*The slope (nm/nm) was converted from the slope (nN/nm) in the force-distance curve dividing by the spring constant of the cantilever.

2. Biomechanical property changes of *E. coli* cells at local scale

Force-distance curves as the tip approached and retracted from the contact with sample surfaces at a maximum loading force of approximately 4 nN (averaged from 6-20 replicates).

>Intact *E. coli* cells had indentation 250–450 nm, which is dependent on accurate estimation of the contact point; impaired cells only had an average indentation of 120 nm.

➢No adhesion on intact untreated cells, whereas large adhesion was detected on treated cells
Georgia

3. Zeta potential and electrical double layer (EDL) theory

E. coli cells, when suspended in liquid, are subject to hydration and forming a EDL. The overall electrical property can be described by zeta potential.

Zeta potential (ζ) is commonly in aquatic chemistry and is measured by Laser Doppler electrophoresis. The electrophoretic mobility (μ_E) is directly measured and ζ potential is converted from Henry's approximation:

$$\mu_E = \frac{2\zeta\varepsilon f(\kappa r)}{3\eta}$$

where ε is the dielectric constant (or permittivity); η is the medium's viscosity (i.e., the viscosity of water); κr is the ratio of particle radius to Debye double layer thickness; and $f(\kappa r)$ refers to Henry's function, which is 1.5 under the Smoluchowski approximation and 1 under the Hückel approximation.

See: Stumm, W.; Morgan, J. J. Aquatic chemistry. 3rd ed.; John Wiley & Sons, Inc.: New York, 1996.

3. Zeta potential and electrical double layer (EDL) theory

Georgia Tech

Wen Zhang, Joseph B Hughes, and Yongsheng Chen. Impacts of hematite nanoparticle exposure on biomechanical and surface electrical properties of *E. coli* cells. *Applied Environmental Microbiology*, Submitted.

Schematic of AFM

Fig. 2. Band diagram of tip and sample according to the operation principle of KPFM

In metals, CPD can be the energy difference between the vacuum level and the Fermi energy. *In semiconductors or biomolecules*, the work function may arise from the difference in energy between the vacuum level and the most loosely bound electron inside the sample.

right in (a) and (d) indicate scale bars of 0.5 and 1 µm, respectively.

• The relation between the work function of the conductive tip, Φ_t , and the sample, Φ_s , is given by

 $\Phi_s = \Phi_t - eV_{CPD}$, where *e* is the elementary charge and V_{CPD} is the CPD or surface potential measured by KPFM. Thus, the mean work function of hematite NPs is approximately **5.71 eV**.

 Literature reported value of the work function or Fermi level is 5.88 eV and the minor difference is probably due to the moisture on hematite surface that induced band bending.

Georgia

The topographical (left column), surface potential (middle column), and phase (right column) images of *E. coli* cells exposed to hematite NPs (98 nm). Exposure times were approximately (a)-(c) 3 min; (d)-(f) 10 min; and (g)-(i) 45 min. The red scale bars at the bottom right of (a)-(c) and (d)-(i) indicate lengths of 2 μ m and 0.5 μ m, respectively.

 Deformation observed with hematite NPs adsorbed and the increasing adsorption time
 Surface appendage (flagella) shredded and scattered around.

Wen Zhang, Joseph B Hughes, and Yongsheng Chen. Impacts of hematite nanoparticle exposure on biomechanical and surface electrical properties of *E. coli* cells. *Applied Environmental Microbiology*, Submitted.

Similar to the finding of zeta potentials but.....
Quite different in the meaning of the electric potential
Visualization of surface heterogeneities
Local surface potential down to the resolution of the cantilever tip diameter

Surface became more negatively charged as more hematite attached.

Wen Zhang, Joseph B Hughes, and Yongsheng Chen. Impacts of hematite nanoparticle exposure on biomechanical and surface electrical properties of *E. coli* cells. *Applied Environmental Microbiology*, Submitted.

Georgia Tech

My previous work on basis of KPFM focused on differentiation of interacting entities (DNA and QDs) at nanoscale.

Wen Zhang, Ying Yao, and Yongsheng Chen Quantifying and Imaging the Morphology and Nanoelectric Properties of Soluble Quantum Dot Nanoparticles Interacting with DNA. *Journal of Physical Chemistry C*, 2011, 115 (3), 599-606.

a

The topography and surface potential differences enable us to better differentiate and quantify QDs bound with DNA.

Wen Zhang, Ying Yao, and Yongsheng Chen Quantifying and Imaging the Morphology and Nanoelectric Properties of Soluble Quantum Dot Nanoparticles Interacting with DNA. *Journal of Physical Chemistry C*, 2011, 115 (3), 599-606.

- The *E. coli* cell surface became coarser, stiffer, and more adhesive with hematite NPs attached.
- Surface potential shifted to more negatively charged with the attachment of hematite NPs, observed by both zeta potential and KPFM.

Mechanisms of surface disruption from a chemical perspective

- High surface area of NPs provides more reactive sites for ROS production
- ROS formed in NP suspension usually consist of superoxide radical (O₂^{•-}), hydroxyl radicals (•OH), and singlet oxygen (¹O₂)
- Representative reaction stochiometry (TiO₂ as an example):

$$\begin{array}{l} {\rm TiO}_{2} \rightarrow^{hv} {\rm TiO}_{2}(h_{vb}^{+} + e_{cb}^{-}) \\ {\rm O}_{2} + e_{cb}^{-} \rightarrow {\rm O}_{2} \bullet^{-} \\ {\rm O}_{2} \bullet^{-} + e_{cb}^{-} + 2 \, {\rm H}^{+} \rightarrow {\rm H}_{2} {\rm O}_{2} \\ {\rm O}_{2} \bullet^{-} + {\rm H}_{2} {\rm O}_{2} \rightarrow \bullet {\rm OH} + {\rm OH}^{-} + {\rm O}_{2} \\ e_{cb}^{-} + {\rm H}_{2} {\rm O}_{2} \rightarrow \bullet {\rm OH} + {\rm OH}^{-} + {\rm O}_{2} \\ e_{cb}^{-} + {\rm H}_{2} {\rm O}_{2} \rightarrow \bullet {\rm OH} + {\rm OH}^{-} \\ h_{vb}^{+} + {\rm OH}^{-} \rightarrow \bullet {\rm OH} \\ h_{vb}^{+} + {\rm H}_{2} {\rm O} \rightarrow {\rm H}^{+} \bullet {\rm OH} \\ 2 \bullet {\rm OH} \rightarrow {\rm H}_{2} {\rm O}_{2} \end{array}$$

Implications:

- Dissolution of metal ions (potentially hazardous to cells);
- Oxidant injury of cells, lipid peroxidation, enzyme or protein oxidation, membrane pitting, changes in membrane permeability, etc. Georgia

Almost all types of engineered NPs were reported to produce ROS!

	DLS size in	TEM Size in	R	esult	5		ND	DLS size in	TEM Size	R	esult	5	
NPs	diameter (nm)	diameter diameter (nm) (nm)	•O H	¹ O 2	O2•	ROS	NPS	diameter (nm)	diameter (nm)	•O H	¹ O 2	O2 .	ROS
	364					Y	SiO ₂ -		13.3,				Y
	175					N	NH ₄ OH/NaC		15.3				
	175					Ν	I/Na ₃ AlO ₃	590±10	15±5				Y
	826-							4	1 6+0 2				
	2308						Si- NH2		1.0 ± 0.2				V
TiO ₂	1000-						DI IVII2		core)				•
2	79				V				1.6±0.2				
	79		•	`	V		Si- N ₃		(only				Y
			2		·				core)				
			v			37	C. COOL		1.6 ± 0.2				NT
	612					Y NI	SI- COOH		(only				IN
	012	15-45							15, 100				
		20+3				V I	Ag		5-10				Y
	2610	20±3				N	U		15				Y
CeO ₂	2010	6, 12,				- 1	Ασ-ΡνΑ		15				Y
2		and				Y			15	,			Y
		1000					γ -Al ₂ O ₃		50	N			
		14				Y	α -Al ₂ O ₃		300	V			
	50-300	20				Y	TPPMS		1.4				Y
ZnO	413							22.1±1.					N 7
	800					Y	Aunps	9				0-	Y
ZnO/PEG	93					Y						Ge	orgia
Fe_2O_3						Y	Co_3O_4		11.4 (by				Y
									SSA)				

Almost all types of engineered NPs were reported to produce ROS!

	DLS size	TEM Size	Results			DLS size	TEM Size	R	lesult	5	
NPs	diameter (nm)	diameter (nm)	•O ¹ O H ₂	O_2 RO	NPs S	diameter (nm)	diameter (nm)	•O H	¹ O 2	O2 .	ROS
Mn ₃ O ₄		12.2 (by SSA)		Ŋ	Polystyrene- COOH	56	<100				Ν
0		12				82	<100				Ν
203 CdTe QDs InP/7nS ODs		28	N		Fullerene	20.5		N	\checkmark	N	Ν
CdS QDs-		2.0	v	v	Fullerene-			,	\checkmark	•	
mercaptoacet ic acid		3	\checkmark	\checkmark	PVP	4.4					V
(MPA) CdSe QDs- MPA) CdSe/ZnS		4.4	\checkmark		Fullerene- polymer (polyvinylprr				\checkmark		Y
QDs- MPA)		4		Ν	Fullerene-						
CdSe/ZnS QDs- biotin			\checkmark		Triton X100; Brij 78;				\checkmark	\checkmark	
CdTe QDs - MPA	20				Ozonated C ₆₀ Aggregates	64 84		\checkmark			N
CdTe QDs- MPA			\checkmark		of C ₆₀	122				I	
Polystyrene- NH ₂	65	<100		Ν	fullerol(hydr	122			N V	V	
Polystyrene- NH ₂	527	<100		Y	oxylated C_{60})	218			G	ieo T	rgia ech
						106					Ν

Example 1: Photoleaching or photo-oxidation of QDs, a chemical reaction driven by ROS production

Environmental
effects (irradiation
intensity,
temperature,
dissolved oxygen,
and dissolved
organic matter)

Coating effect

Ion Concentration Measurement with ICP-MS

Georgia Tech

Characterization of)Ds

(a)-(c) HR-TEM images of Polydiallydimethylammounium chloride (PDDA)-, PEGcarboxylic acid-, and PEGamine-coated QDs, (d) FTIR spectra, (e) Intensity-averaged PSD diagrams, and (f) zetapotentials as a function of pH for the three types of QDs.

- 1. CdSe/ZnS as the core 2. 3-5 nm in diameter
 - (TEM)
- **3.** Different surface coating and surface charge

lect

Yang Li, Wen Zhang, Kungang Li, Ying Yao, Junfeng Niu, and Yongsheng Chen. Oxidative dissolution of polymerencapsulated CdSe/ZnS quantum dots Georgia under UV irradiation: mechanisms and kinetics. Journal of Physical Chemistry C. Submitted.

Example 1: ROS measurement, an indirect indication using scavengers

Scavenging experiments:

>t-BuOH (30 mM), l-histidine (80 mM) and superoxide dismutase (SOD) (2000 unit/L) from *Escherichia coli* were used to scavenge •OH, ${}^{1}O_{2}$, and $O_{2}^{\bullet-}$, respectively. >Monitoring the release rates of Cd and Se to indicate the presence of ROS ($O_{2}^{\bullet-}$).

(a) Dissolution kinetics of PDDA-coated QDs in the presence and absence of scavengers (initial concentration of QDs 140 \pm 3 µg-Cd/L, t-BuOH 30 mM, 1-histidine 80 mM, and SOD 2,000 unit/L), (b) UV-Vis absorption spectra of PDDA-coated QDs in the presence of XTT as a function of irradiation time (initial concentration of QDs 1.4 \pm 0.03 mg -Cd/L and XTT 0.15 mM)

lect

Yang Li, Wen Zhang, Kungang Li, Ying Yao, Junfeng Niu, and Yongsheng Chen. Oxidative dissolution of polymer-encapsulated CdSe/ZnS quantum dots under UV irradiation: mechanisms and kinetics. *Journal of Physical Chemistry C*, Submitted.

Example 2: Another indirect ROS measurement method using indicators

Methods of pr	robing ROS ge	neration fr	om different t	ypes of NPs	
ROS	•OH	¹ O ₂	O ₂ •-	1	
Method	HPLC	HPLC	UV-Vis (4	430 nm)	
Indicator	pCBA	FFA	XTT		
Preliminary res	ults				
NPs	•OH		¹ O ₂	O ₂	
TiO ₂	\checkmark		\checkmark	\checkmark	
CeO ₂				\checkmark	
SiO ₂					
ZnO	\checkmark			\checkmark	
CuO		Unde	or investigation		
AuNPs		Chu	1 mrcsugation		Tech

ROS generation on different NPs (TiO₂, CeO₂, and ZnO as examples)

- TiO₂ NPs produces three types of ROS under UV.
- Under room light or dark environment, no significant ROS were detected.

Georgia

lect

Yang Li, Wen Zhang, Junfeng Niu, and Yongsheng Chen. Reactive oxidative species generation from engineered nanoparticles: kinetics and toxicity implications. *In preparation*.

ROS generation on different NPs (TiO₂, CeO₂, and ZnO as examples)

Yang Li, Wen Zhang, Junfeng Niu, and Yongsheng Chen. Reactive oxidative species generation from engineered nanoparticles: kinetics and toxicity implications. *In preparation*.

Quantitative relationship between ROS production and toxic potential (ongoing research)

Now, I propose to assign the weight factors and calculate the "ROS index" for each type of NPs that is further used to draw a relationship with mortality rates (as an indicator of toxic potential).

Different ROS/NPs	•OH	¹ O ₂	O₂ [←]		
Weight	A1	A2	A3		
ROS production rate constant (s ⁻¹)	k1	k2	k3		
ROS index=	A1 [·] k1+A2 [·] k2+A3 [·] k3				

Georgia

Yang Li, Wen Zhang, Junfeng Niu, and Yongsheng Chen. Reactive oxidative species generation from engineered nanoparticles: kinetics and toxicity implications. *In preparation*.

> Physical and chemical insight into nanotoxicity.

- Changes in bioimechanical and electrical properties may interpret the surface disruption
- ROS leads to the chemical irritation for cells and is widely detected in many types of engineered NPs.

Acknowledgements

Advisor: Dr. Yongsheng Chen PhD student:

Kungang Li, Jia Yang, Wei Zhang, Jin Gi Hong **Research scientist:** Wen Zhang **Exchange student:** Yang Li **Visiting scholar:** Ying Chen

Georgia

Funding agency:

- U.S. Environmental Protection Agency Science to Achieve Results Program Grant RD-83385601;
- ➢ Semiconductor Research Corporation (SRC)/ESH grant (425.025).

