The Role of Protein Oxidation in the Toxicity of Inorganic Nanoparticles

Wenjie Sun, Antonia Luna-Velasco, Reyes Sierra-Alvarez, Jim A. Field

Dept. Chemical & Environmental Engineering The University of Arizona E-mail: alexsun@email.arizona.edu

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Nanoparticles

Nanoparticles (NPs): Nano-sized materials (1-100 nm)

LARTA newsletter, June 24,2002

2D- Nanowalls

Nanoparticles in the Environment

Natural

Volcanic activity

Erosion and dust

Biological processes

Incidental

Combustion Construction Mining

Engineered

Carbon-based (fullerene, carbon nanotubes) Inorganic (metal oxides & metals) **Hybrid structures** (Quantum dots, core shell structures)

Carbon nanotube

Fullerene

Quantum dots

Metallic oxide

Properties & Applications

Environmental Health & Safety Concerns

Toxicity of Nanoparticles

¹Daphnia magna: A) C_{60} & B) TiO_2 NPs intake & translocation.

Not exposed

²Zebrafish embryos exposed to Ag NPs depositionDeformation & apoptosis

¹Baun *et al.* 2008. Ecotoxicol.17:387-395; ²Asharani *et al.* 2008. Nanotechnol. 19:255102; ³Park et al. 2008. Toxicol. 245:90-100.

Toxicity Mechanisms

Toxicity by Reactive Oxygen Species (ROS)

Oxidative damage eroxidation Protein oxidation

Adapted from Li et al. 2008, Water Res, 42:4591

ROS Formation by Inorganic NPs

Summary Results

 Mn_2O_3 , CeO_2 , Fe_2O_3 and Fe(0) react with L-dopa and O_2 to greatly enhance ROS formation

ZnO, SiO₂ and Al₂O₃ react with L-dopa and O₂ to enhance ROS formation to a lesser extent

HfO₂, ZrO₂ do not enhance ROS production (inert)

Objectives

Determine if the NPs studied can cause oxidation of the protein BSA.

Evaluate the effect of particle size on the oxidation of the protein BSA.

Evaluate the role of oxygen in the oxidation of the protein BSA.

Evaluate the chemical ROS production by Cu(0) and CuO NPs.

Nanomaterials and Methods

Hafnium oxide (HfO₂)

HfO₂

- Cerium oxide (CeO₂)
 Silicon oxide (SiO₂)
 Aluminum oxide (Al₂O₃)
- Others:

Fe(0), Fe₂O₃, ZrO₂, ZnO, Mn₂O₃, Ag, Cu(0) and CuO.

 Mn_2O_3

ZnO

ICP-OES:

To determine very precisely the elemental composition of samples

- <u>Scanning and Transmission Electron</u> <u>Microscopy (SEM and TEM)</u>
 University of Arizona Spectroscopy and Imaging Facilities
- Particle Size Distribution (PSD) and Zeta Potential

Measurement of BSA Protein Oxidation by NPs

BSA (Bovine Serum Albumin)

BSA (100 mg L⁻¹) Stock 20x in PBS, pH 7.4

50 nm

NPS (200 mg L⁻¹) Stock 10x dispersed in PB 5 mM (pH 7.4) & sonicated 5 min at 75% amplitude

Incubations in PB pH 7.4 at 37 °C

Protein Oxidation Carbonyl (CO) groups on side protein chain mainly from: Pro, Arg, Lys, and Thr

Protein carbonyls measurement by ELISA test

Rapid detection/quantification as an index of oxidized proteins (Kit OxiSelect)

eg. glutamic semialdehyde

BSA Protein Oxidation by Mn₂O₃ NPs

Oxidized standard BSA: 7.5 nmol protein carbonyl/mg protein (= 100% oxidized BSA).

~ 50% of BSA was oxidized by Mn_2O_3 NPs at the rate of 1.06 nmol protein CO/mg protein/d within a week exposure under aerobic conditions.

BSA Protein oxidation by inorganic NPs

Cu(0), most reactive on the BSA protein oxidation. Mn₂O₃, CuO and Fe(0) moderate on the BSA protein oxidation. All other NPs are not reactive or very slow reactive on the BSA protein oxidation (inert).

BSA Protein oxidation by inorganic NPs

BSA Protein Oxidation by Cu(0) and CuO NPs

Oxidized standard BSA: 7.5 nmol protein carbonyl/mg protein (=100% oxidized BSA).

BSA protein was oxidized by Cu(0) and CuO NPs at the rate of 6.26 and 1.27 nmol protein CO/mg protein/d , respectively, with a week exposure under aerobic conditions.

Effect of Size on the BSA Protein Oxidation by Cu(0) and CuO NPs

Nano-sized Cu(0) and CuO demonstrated significant increase of BSA protein oxidation compared to micro-sized counterpart with four days exposure under aerobic conditions.

Compared to the BSA protein oxidation caused by soluble Cu^{2+} , the Cu(0) (both nano and micro size) show much higher oxidation.

Role of Oxygen in BSA Protein Oxidation by Inorganic NPs

 Mn_2O_3 , Cu(0) and CuO could oxidize the BSA protein with four days exposure under both aerobic and anaerobic conditions.

The presence of oxygen enhanced the BSA protein oxidation by NPs.

Rapid Method for Chemical ROS by Inorganic NPs

Based on fluorescence of ROS-sensitive dye

ROS Assay

NPs (200 mg L⁻¹) Stock 10x in water sonicated 5 min, 75 % amplitude

Phenolic biomolecules L-dopa or catechol (500 mM) Stock 4x in 3% methanol (v/v)

ROS-dye (DCFH 20 uM) Stock 40 uM in phosphate buffer (PB), pH 7.4

Incubated at 37 °C Masked from light.

Controls: NPs, L-dopa & dye, each alone

ROS Indicator-Dye Oxidation by Cu(0) and CuO NPs

Cu(0) and CuO NPs react with L-dopa and O_2 to greatly enhance ROS formation

Conclusions

Mn₂O₃, Fe(0), Cu(0) and CuO NPs caused constant and significant oxidation of BSA protein under aerobic conditions; however, all other inorganic NPs are not reactive or very slow reactive with BSA protein.

The nano-sized Cu(0) and CuO significantly increased the protein oxidation compared with micro-sized counterpart.

The protein oxidation by NPs happened under both aerobic and anaerobic conditions; however, the presence of oxygen enhanced the protein oxidation.

ROS formation or direct protein oxidation by NPs could be important mechanisms for the oxidative stress to cells.