New Paradigms in Energy Production – Texas Style

8/23/2012

Bob Helms

Institute for Intelligent Energy Systems

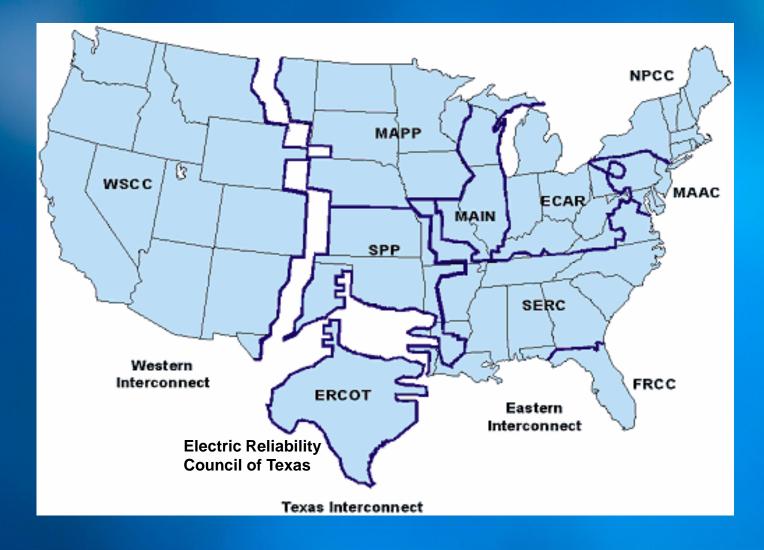
Robert.Helms@UTD.edu

The University of Texas at Dallas

US Energy Profile

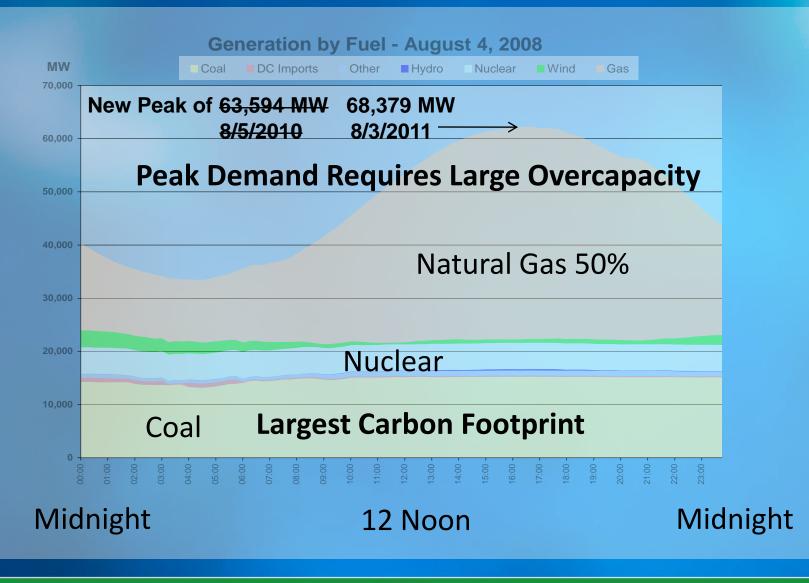
Source

- Oil 25%
- Coal 25%
- Nat Gas 25%
- Nuclear 10%
- Renewables 10%
 Mainly Hydro


Use

- Electric Power 40%
- Transportation 30%

Other – 30%


US Electric Power Distribution Management

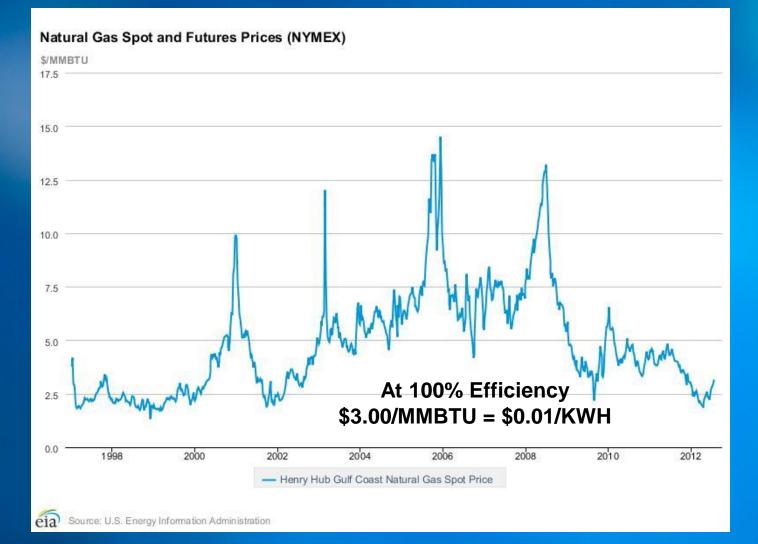
The University of Texas at Dallas

Texas Demand vs Time of Day

UT D

Texas Energy Economics 101

Electric Power

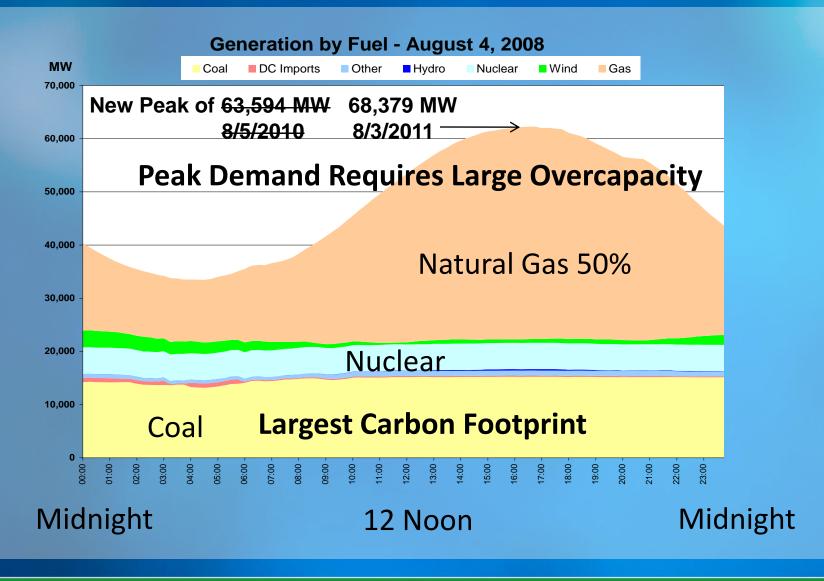

 Cost is Very Sensitive to the Cost of Natural Gas

 Hydraulic Fracturing (HydroFracking) Combined with Horizontal Drilling has Increased the Nat Gas Supply Considerably

Especially in Texas

Natural Gas Price History

Henry Hub Prices after eia.gov



Part 1 - Conclusions

- Plentiful, Cheap Natural Gas is a Significant Barrier to New Renewable Installations in Texas
 - Note CO₂ Production, However
 - Increased Interest in Methane Fuel Cells (e.g. BloomEnergy)
- Conservation and System Efficiency is Still a Best Practice to Reduce Energy Consumption
- Solutions to Reduce and/or Shift Peak Loads can Provide Significant Energy (and Cost Savings)

Texas Demand vs Time of Day

UT D

Peak Load Reduction Strategies

- Requires 6-12 Hours of Storage
- Smart Meters
- Storage
 - Thermal
 - Batteries
- On-Site Generation
 - Particularly Solar
 - With Storage (Solar Peaks 3 Hrs Early)
- What About Electric Car Charging Stations?

DFW Airport TES System

- Thermal Storage Moves 15 MWatt's Off Peak
- 90,000 Ton-Hrs
- 6 Million Gallons

 Large Footprint

Electrical Storage Solutions in Texas

The University of Texas at Dallas

Results on Ultracapacitor Materials Research – J. Ferraris Group

Device	Energy (J)	Volume (cm ³)	Mass (g)	Energy density (J/cm ³)	Energy density (Wh/kg) packaged
Panasonic Lithium Ion battery	23700	17.7	42.5	1339.0	154.8
A123 systems Lithium Ion battery	23800	34.2	70	695.9	94.4
Panasonic lead acid battery	54800	230	590	238.3	25.8
Maxwell Technologies PC-10 ultracapacitor	31.3	3.35	6.3	9.3	1.9
NESSCAP CO. LTD Ultracapacitor	26.5	2.4	3.6	11.0	2.1
Panasonic Electric double layer capacitor	2.65	1.11		2.4	
United Chemicon aluminum DLC	5	35.5		0.1	
UTD EDLC based on Poly(AN- <i>co</i> -VIM) (unpackaged)					46 Wh/kg

UT D

Tesla Roadster

288 HP375 v Motor245 Mile Range

125 MPH 1000 lb Battery

0-60 in 3.7 sec 215(56) KW(H)

www.Teslamotors.com

Part 2 Conclusions

- Many Parts of the US Benefit from VERY Low Cost Electric Power
 - Natural Gas
- Near Term Opportunities
 - Effective Use of Current Infrastructure
 - Storage & On-Site Generation
 - Improved System Efficiencies
 - Strategy that Does Not Require Grid-Tied Charging Stations for Electric Vehicles

Is Energy Independence Possible? Dean Kaman's N. Dumpling Is. Home In NY, S. of Mystic, Conn.

A Plan for a Sustainable Future

How to get all energy from wind, water and solar power by 2030

The University of Texas at Dallas

