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NP 

Advantages to Nanotechnology 

Enhanced Drug 

Solubility 

Increased Drug 

Specificity 

Imaging 

Applications 

Diagnostics 

Altered Optical 

Properties 

Increased 

Insulating Ability 

Improved 

Electronic Efficacy 

Bactericidal 

Consumer Products Medicine & Research 

But what are the risks? 
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The most accepted toxicological 

evaluation is an in vivo study. Because 

tissues are composed of multiple cell 

types, in vitro toxicology must use 

multiple cell types in the study design.  

Effects must be related to particle PCC 

• Size 

• Morphology 

• Surface 

Nanotoxicology is the study of the environmental and human health 

effects of nanomaterials designed to improve our way of life. 

3-step process to characterize nanotoxicity 

1. Delivery 

2. Chemical/biochemical reaction with target 

3. Cellular dysfunction and resultant toxicities 

What is Nanotoxicology? 
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Themes in Nanotoxicology that Influence Other Fields 

Approach: The scale of health using the hierarchical oxidative stress model 
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no observable adverse effects 

immunological response  

no extended adverse effects  

This approach fits well within RTI International 

“turning knowledge into practice” 

Level of Oxidative Stress Increasing 

Increasing Particle Concentration 
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Structure Chemistry Toxicity 

Toxicological evaluations require comprehensive material characterization including both 

physical attributes and chemical surface reactivity.  

Physical & chemical features of nanomaterials 
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Nanoparticle Properties Relevant 

To Nanotoxicology 

 

1) Chemical composition 

2) Size & size distribution 

3) Surface area  

4) Surface chemistry, 

stability, REDOX 

5) Crystallinity & purity 

6) pH & ISP 

SO3H
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Raw Materials 
Production 

Product 
Manufacturing 

Consumer 
Use 

Product End 
of Life 

 

A Life-Cycle Approach 

 

 

 

 

 

 

 

 

Step 1: Material Characterization of Pristine Engineered Nanomaterial 

 

Step 2: Formulate Nanocomposite or Other Nano-Enabled Bulk Material 

 

Step 3: Simulate Wear-and-Tear or Weathering Conditions 

 

Step 4: Measure Exposures 

 

Step 5: Perform Focused Toxicity Testing 

 

Step 6: Assess and Manage Risks 
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CASE STUDY: 

Importance of Material 

Characterization 
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Material Characterization 

Berg & Sayes, Nanotoxicology, 2009 

Effects of pH on a metal 

oxide nanoparticle 
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Gastric Acid 
Lysosomal 

Fluid 

Intestine & 

Urine 
Blood 

pH Level <2 4.5 5 7.4 

Metal oxide 

nanomaterial 
Zeta potential (mV) / Average agglomerate size (nm) 

TiO2 +46/1573 +22/1860 +7/2390 -37/460 

ZnO +50/360 +44/945 +16/1200 -3/1170 

Al2O3 +45/561 +38/1750 +27/2400 -4/3050 

CeO2 +32.6/1444 +26/2340 +20/2590 -6/2850 

Fe2O3 +25.4/1800 -9/1740 -15/1700 -47/830 

Can we predict how nanomaterials would behave in physiological compartments? 

TiO2 and Fe2O3 nanoparticles demonstrate strongly charged agglomerates at pH=7.4 

Material Characterization 
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CASE STUDY: 

TOXICOLOGICAL EFFECTS  

(AND  MECHANISTIC ANALYSES)  

OF SILICA NANOPARTICLES 
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In vitro cellular systems will need to be further developed, standardized, 

and validated (relative to in vivo effects) in order to provide useful 

screening data on the relative toxicity of inhaled particles 

Each particle should be tested on a case-by-case basis 

Cannot assume that nanomaterials are the same as 

their bulk counterpart 

but also cannot assume that they are more toxic 

Risk = Hazard  Exposure 

Most nanotoxicology studies include hazard 

identification 

only some include exposure assessment 
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• Schematic diagram of the aerosol 

nanoparticle reactor with 

characterization instrumentation 

• TEOS was pyrolyzed to generate SiO2 

nanoparticles that are charged with an 

aerosol neutralizer 

• Characterized with a long or nano DMA, 

and measured for particle concentration 

with a condensation nucleus counter or 

aerosol electrometer 

Experimental Design 

Exposure Groups 

 Group 1 (3 day exposure) 

Sham (5 rats/group) 

Particle-exposed (5 rats/group) 

 Targeted particle sizes = 35 nm 

and 80 nm 

 Group 2 (1 day exposure) 

Sham (5 rats/group) 

Particle-exposed (5 rats/group) 

 Targeted particle sizes = 35 nm 

and 80 nm 

Inhalation 

Post-exposure evaluation via 

lung fluid and lung tissue 

                                         

 24 hr 1 wk 1 mo 2 mo   

 (lung fluid)  (tissue) 

Dose Metrics for Inhalation Studies 

15 



Engineering and Technology 

Particle Physicochemical Characterization 

Aerosol Concentrations and Sizing

of 37 nm Amorphous Silica Particles (1x Day 1)
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Aerosol Concentrations and Sizing

of 71 nm Amorphous Silica Particles (3x Day 3)
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Aerosol nanoparticle size distributions for SiO2 exposure in the inhalation chamber 

as a function of exposure time demonstrating aerosol stability   

Typical aerosol exposure run on day 1 

for the d50 = 37 nm particle generation 

experiment 

Typical aerosol exposure run on day 3 

for the d50 = 83 nm particle exposure 

experiment 

37 nm 83 nm 

16 



Engineering and Technology 

Inflammatory Response Dead Cells 

Pulmonary Effects 

Lung lavage fluid percent polymorphed neutrophil 

(%PMN) values 

Lung lavage fluid lactate dehydrogenase (LDH) values  
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sham (unexposed) animals animals exposed to  

83 nm aerosolized silica 

nanoparticles  

AD 

TB 

AD 

TB 

AD 

Lung pathology after 2 month exposure 

animals exposed to  

37 nm aerosolized silica 

nanoparticles  

AD 

TB 

Exposed Sham 

Catalase Activity 

 (mU • mL-1 • mg protein-1) 
34.35 ± 0.2 31.63 ± 0.01 

Total Glutathione 

(mM/10k cells) 
2.34 ± 0.19 1.69 ± 0.14 

Pulmonary Effects 
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Lung Tissue of Rat Exposed to Positive Control Particle after 1 week 
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2011 

Berg and Sayes, CRT (2010) 

Oxidative Stress is a Theme in Nanotoxicology 
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Differential Cellular Uptake Mechanisms 

21 
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Tier 1 

Normal 

Tier 2 

Antioxidant 
Defense 

Tier 3 

Inflammation 

The Role of In Vitro Toxicology in Nanotoxicology 

Due to the enormous range of nanomaterial-types, coupled with the infinite variety of surface 

coatings, in vitro toxicology will play a major role in hazard identification 

Hierarchical Oxidative Stress Model 

But, are we considering if the effects are reversible? 
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Characteristics of A549 and MeT-5A Cells 

A549 Cell Line 

• Isolated through explant culture of 

lung carcinomatous tissue  

• Considered a type II lung epithelial cell 

epithelial (surfactant producing) 

• Reported to have high levels of 

antioxidant enzymes 

 

MeT-5A Cell Line 

• Isolated from pleural fluids obtained 

from non-cancerous individuals 

• Transfected with a plasmid containing 

SV40 

• Normal cell precursor to mesothelioma 

 

Berg JM, Figueroa DE, Romoser AA, Sayes CM. (2012) 

Toxicology In Vitro, submitted. 

Cu/Zn SOD 

Mn SOD 

A549 MeT-5A 

Catalase 

GAPDH 
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Silica at the Nanoscale:  How safe is it? 

Micrometer crystalline SiO2 is a Class II IARC 

probable carcinogen often associated with 

respiratory diseases such as: 

• Silicosis 

• Fibrosis 

 

Endpoints in toxicological studies involving 

SiO2 are often dependent upon particle 

surface characteristics 

Micrometer amorphous SiO2 is under GRAS 

classification and often used as a negative 

control in toxicological studies 

Since SiO2 particle toxicity has often been reported as a function of surface 

parameters, and since nanoparticles exhibit high surface area to mass ratios, it 

is necessary to reevaluate the safety of SiO2 particles at the nanoscale 

SEM: Nanoscale Amorphous SiO2 
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250 nm 

5 µm 

Transmission Electron Micrograph 

Scanning Electron Micrograph 

Energy Dispersive X-ray Spectroscopy 

Silica Nanoparticle Characterization 
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Concentration of H2O2 (µM) 

Differential Response to Oxidative Stress 

MTT Assay Live:Dead Cell Counts 
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NF-E2 Related Factor (Nrf2) 

• Critical regulator of 

intracellular 

antioxidants and 

phase II 

detoxification 

enzymes.   

 

• May be induced by: 

• Electophilic 

Stress 

• Kinase Signaling 

Pathways 

 

• Activation of Nrf2 

can be cyto-

protective at low 

levels of ROS 

The Good The Bad 
• Elevated Nrf2 is a major 

obstacle to the 

successful treatment of 

many cancers 

 

 The Ugly 
We hypothesize that SiO2 

nanomaterials, which has 

been shown to produce 

ROS, may activate the 

Nrf2 signaling pathway. 

This induction might lead 

to the induction of many 

phase II genes which can 

have implications in both 

resistance against cell 

death and carcinogenesis 
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Nrf2 Stabilization 
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Nrf2 Cytoplasmic Stabilization & Nuclear Translocation 

Unexposed Control tBHQ (50 mM) SiO2 (75 µg/mL) 
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Cytoplasmic stabilization & nuclear translocation of NRF-2 (GREEN) was evident following 

treatment with tBHQ or SiO2 nanoparticles for 24 hrs in both cell lines  
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CASE STUDY: 

MIXTURES NANOTOXICOLOGY – 

ITS HARDLY EVER JUST ONE 
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Exposure to Nanoparticle Mixtures 

Reported Exposure to Nanoparticle Mixtures 

 

Reference 

 

Manganese from nearby welding during Li4Ti5O12 handling Peters, 2009 

Iron and nickel as catalysts in carbon nanotube synthesis Maynard, 2004 

Silicon & asbestos from insulation during CNTsynthesis Han, 2008 

Combustion-derived particles from forklifts, heaters, & traffic Kuhlbusch, 2006 & 2010 

Therefore, nanoparticle exposures are often mixtures of 

combustion derived  

carbonaceous particles and transition metals  
31 
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Nanoparticles Representative of Mixtures 

Carbonaceous Particle 

• Engineered Carbon Black 

• Used as a surrogate for elemental 

carbon in particulate matter 

• Extensively used in airborne 

toxicological studies 

 
 

 

 

Fe2O3 

ECB 

Transition Metal 

• Iron oxide (Fe2O3) 

• Represent transition metal oxides in 

particulate matter 

• Water insoluble particle, but soluble in 

acidic pH 
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Guo and Sayes, P&FT, 2009 

 

Aim 

 
Determine if Co-exposures to 

Fe2O3 and ECB results in additive 

or synergistic cytotoxicological 

effects 

 

Conclusion 

 
“Co-exposure to carbon black and 

Fe2O3 particles can cause 

oxidative stress that is 

significantly greater than the 

additive effects of exposures to 

either particle type alone.”   
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Chemically Active Groups on 

ECB Surface Gives Rise to 

Surface Redox Capabilities 

  
H2Q(s) + 2Fe3+

(aq) ------>  Q(s) + 2Fe2+
(aq) + 2H+

  

 

 

Fenton Reaction: 

 
Fe2+ + H2O2 → Fe3+ + OH· + OH-  

 

Hypothesis:  Oxidative stress formed in a co-exposure of 

Fe2O3 and ECB can be eliminated by surface oxidation of 

ECB (termed: ox-ECB). 

Oxidation Decreases Reductive Capacity 
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XPS gives quantitative data on  

elemental composition and   chemistry on the particle surface 

ECB (%) Ox-ECB (%) 

%C [C/ C+O] 89.88 88.53 

%O [O/ C+O] 10.12 11.47 

O:C 0.1126 0.1295 

 

Ratio of Q(s):H2Q(s) was found to be circa 5000 times greater in ox-ECB than in ECB. 

The O:C ratio in ox-ECB is 15% greater than in ECB. This may not seem like a large 

increase, but edge carbons comprise about 20% of the total carbon content for 50 nm 

amorphous carbon particles. 

H2Q(s) + 2Fe3+
(aq) ------>  Q(s) + 2Fe2+

(aq) + 2H+
  

Surface Chemistry Analysis with XPS 
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Intracellular Nanoparticle Incorporation 
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1. A majority of the Fe2O3 is internalized into the cells after 24 hours 

2. Uptake of Fe2O3  is not altered following ECB co-exposure 

 

Intracellular Nanoparticle Incorporation 
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Nanoparticle Agglomerates in Cellular Vesicles 

STEM-HAADF micrograph 

of internalized Fe2O3 

nanoparticle agglomerates 

Lysosomal Trafficking 

• Nanoparticles accumulate in 

lysosomes 

• pH ≤ 5.2 (pKa Lysotracker Red) 

• May alter dynamic nanoparticle 

properties  

• May solubilize water insoluble 

particles 

Fe2O3 Exposed 

2μm 

Control ECB Ox-ECB 

Fe2O3 

1 hr 

3 hr 

24 hr 

Intracellular Trafficking of Nanoparticles 
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Oxidant Production 

 

• Significant increases seen 

in Fe2O3 and ECB co-

exposure groups 

 

• Oxidant production 

eliminated by addition of 

L-ascorbic acid 

 

• ox-ECB and Fe2O3 did not 

differ from control groups 

 

• Effects greater at 25 

hours than at 2.5 hours 

Statistically significant to control population; P<0.05 
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Nanomaterial physicochemical 

features 
Induced toxicological effects Mathematical techniques 

Cross-validation 
More 

fundamental 

More 

complicated 
Immediate Systemic 

Regression 

Analysis 
Classification 

Primary particle 

size 

Zeta potential (as 

a measure of 

surface charge) 

Cell viability Metabolism Linear 

Linear 

Discriminant 

Analysis 

Inter-lab 

comparisons 

Shape Agglomerate size 
Tissue 

damage 

Distribution & 

accumulation 
Non-linear 

k-Nearest 

Neighbor 
Beta-testers 

Chemical 

composition 

Adsorption of 

surrounding 

matrix 

Cytokine 

production 
Inflammation 

Machine 

learning 

Support Vector 

Machines 

Additional 

physicochemical 

data 

Specific surface 

area 

Reductive 

capacity 

Membrane 

damage 

Immune 

response 

Causal 

relationships 

Decision Trees 

or Neural 

Networks 

Additional 

toxicology data 

THREE KEY AREAS OF GROWTH: 
 

Mathematical/Computational-Based Predictive Models 

 

Alternative Toxicity Testing 

 

Characterization of Real-World Exposure Scenarios 

Where Do We Go From Here? 
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