

ERC/SRC center at University of Arizona May 31, 2012

Contemporary Issues in Nanotoxicology: Continuing to Relate Material Properties to Biological Response

Christie Sayes, Ph.D. Program Manager Nanotoxicology & Nanopharmacology Center for Aerosol and Nanomaterials Engineering RTI International csayes@rti.org

ACKNOWLEDGMENTS

Sayes Lab

Department of Vet. Physiology & Pharmacology and the Department of Biomedical Engineering

- Michael Berg
- Amy Romoser
- Aishwarya Sooresh
- Allen Sho
- Peter "Alex" Smith
- David Figuero

Center for Aerosols and Nanomaterials Engineering

- Spencer West
- Phil Durham
- Laura Haines

Advantages to Nanotechnology

But what are the risks?

What is Nanotoxicology?

Nanotoxicology is the study of the environmental and human health effects of nanomaterials designed to improve our way of life.

3-step process to characterize nanotoxicity

- 1. Delivery
- 2. Chemical/biochemical reaction with target
- 3. Cellular dysfunction and resultant toxicities

Effects must be related to particle PCC

- Size
- Morphology
- Surface

The most accepted toxicological evaluation is an in vivo study. Because tissues are composed of multiple cell types, in vitro toxicology must use multiple cell types in the study design.

Themes in Nanotoxicology that Influence Other Fields

Approach: The scale of health using the hierarchical oxidative stress model

Level of Oxidative Stress Increasing

Increasing Particle Concentration

This approach fits well within RTI International *"turning knowledge into practice"* ⁵

Physical & chemical features of nanomaterials

Structure Chemistry Toxicity

Toxicological evaluations require comprehensive material characterization including both physical attributes and chemical surface reactivity.

Nanoparticle Properties Relevant To Nanotoxicology

- 1) Chemical composition
- 2) Size & size distribution
- 3) Surface area
- 4) Surface chemistry, stability, **REDOX**
- 5) Crystallinity & purity6) pH & ISP

- Step 1: Material Characterization of Pristine Engineered Nanomaterial
- Step 2: Formulate Nanocomposite or Other Nano-Enabled Bulk Material
- Step 3: Simulate Wear-and-Tear or Weathering Conditions
- Step 4: Measure Exposures
- Step 5: Perform Focused Toxicity Testing
- Step 6: Assess and Manage Risks

CASE STUDY: Importance of Material Characterization

Material Characterization

Material Characterization

Can we predict how nanomaterials would behave in physiological compartments?

	Gastric Acid	Lysosomal Fluid	Lysosomal Intestine & Fluid Urine	
pH Level	<2	<2 4.5		7.4
Metal oxide nanomaterial	Zeta pot	ential (mV) / Avera	age agglomerate s	ize (nm)
TiO ₂	+46/1573	+22/1860	+7/2390	-37/460
ZnO	+50/360	+44/945	+16/1200	-3/1170
AI_2O_3	+45/561	+38/1750	+27/2400	-4/3050
CeO ₂	+32.6/1444	+26/2340	+20/2590	-6/2850
Fe ₂ O ₃	+25.4/1800	-9/1740	-15/1700	-47/830

TiO₂ and Fe₂O₃ nanoparticles demonstrate strongly charged agglomerates at pH=7.4

CASE STUDY: TOXICOLOGICAL EFFECTS (AND MECHANISTIC ANALYSES) OF SILICA NANOPARTICLES

Risk = Hazard × Exposure

Most nanotoxicology studies include hazard identification only some include exposure assessment

Cannot assume that nanomaterials are the same as their bulk counterpart but also cannot assume that they are more toxic

Each particle should be tested on a case-by-case basis

In vitro cellular systems will need to be further developed, standardized, and validated (relative to *in vivo* effects) in order to provide useful screening data on the relative toxicity of inhaled particles

Dose Metrics for Inhalation Studies

- Schematic diagram of the aerosol nanoparticle reactor with characterization instrumentation
- TEOS was pyrolyzed to generate SiO₂ nanoparticles that are charged with an aerosol neutralizer
- Characterized with a long or nano DMA, and measured for particle concentration with a condensation nucleus counter or aerosol electrometer

Experimental Design

Exposure Groups

- Group 1 (3 day exposure) Sham (5 rats/group) Particle-exposed (5 rats/group) Targeted particle sizes = 35 nm and 80 nm
- Group 2 (1 day exposure) Sham (5 rats/group) Particle-exposed (5 rats/group) Targeted particle sizes = 35 nm and 80 nm

Inhalation

Particle Physicochemical Characterization

Aerosol nanoparticle size distributions for SiO₂ exposure in the inhalation chamber as a function of exposure time demonstrating aerosol stability

Typical aerosol exposure run on day 1 for the $d_{50} = 37$ nm particle generation experiment Typical aerosol exposure run on day 3 for the $d_{50} = 83$ nm particle exposure experiment

Pulmonary Effects

■24 Hour

■1 Week

□1 Month

Т

Exp 3X

T

Sham 3X

Pulmonary Effects

Lung pathology after 2 month exposure

sham (unexposed) animals

animals exposed to 37 nm aerosolized silica nanoparticles animals exposed to 83 nm aerosolized silica nanoparticles

18

	Exposed	Sham
Catalase Activity (mU • mL ⁻¹ • mg protein ⁻¹)	34.35 ± 0.2	31.63 ± 0.01
Total Glutathione (μM/10k cells)	2.34 ± 0.19	1.69 ± 0.14

Lung Tissue of Rat Exposed to Positive Control Particle after 1 week

Oxidative Stress is a Theme in Nanotoxicology

Berg and Sayes, CRT (2010)

Internalization and Cytotoxicity of Nanoparticle Mixtures

Nanoparticle and Oxidative Stress

20

Differential Cellular Uptake Mechanisms

The Role of *In Vitro* Toxicology in Nanotoxicology

Due to the enormous range of nanomaterial-types, coupled with the infinite variety of surface coatings, in vitro toxicology will play a major role in hazard identification

Hierarchical Oxidative Stress Model

But, are we considering if the effects are reversible?

Characteristics of A549 and MeT-5A Cells

A549 Cell Line

- Isolated through explant culture of lung carcinomatous tissue
- Considered a type II lung epithelial cell epithelial (surfactant producing)
- Reported to have high levels of antioxidant enzymes

MeT-5A Cell Line

- Isolated from pleural fluids obtained from non-cancerous individuals
- Transfected with a plasmid containing SV40
- Normal cell precursor to mesothelioma

Berg JM, Figueroa DE, Romoser AA, Sayes CM. (2012) <u>Toxicology In Vitro</u>, submitted.

Silica at the Nanoscale: How safe is it?

Micrometer amorphous SiO₂ is under GRAS classification and often used as a negative control in toxicological studies

Micrometer crystalline SiO₂ is a Class II IARC probable carcinogen often associated with respiratory diseases such as:

- Silicosis
- Fibrosis

Endpoints in toxicological studies involving SiO₂ are often dependent upon particle surface characteristics

SEM: Nanoscale Amorphous SiO₂

Since SiO_2 particle toxicity has often been reported as a function of surface parameters, and since nanoparticles exhibit high surface area to mass ratios, it is necessary to reevaluate the safety of SiO₂ particles at the nanoscale

Silica Nanoparticle Characterization

Transmission Electron Micrograph

Scanning Electron Micrograph

Differential Response to Oxidative Stress

Live:Dead Cell Counts

NF-E2 Related Factor (Nrf2)

The Good

- Critical regulator of intracellular antioxidants and phase II detoxification enzymes.
- May be induced by:
 - Electophilic
 Stress
 - Kinase Signaling Pathways
- Activation of Nrf2 can be cytoprotective at low levels of ROS

The Bad

 Elevated Nrf2 is a major obstacle to the successful treatment of many cancers

The Ugly

We hypothesize that SiO₂ nanomaterials, which has been shown to produce ROS, may activate the Nrf2 signaling pathway. This induction might lead to the induction of many phase II genes which can have implications in both resistance against cell death and carcinogenesis

Nrf2 Cytoplasmic Stabilization & Nuclear Translocation

Cytoplasmic stabilization & nuclear translocation of NRF-2 (GREEN) was evident following treatment with tBHQ or SiO₂ nanoparticles for 24 hrs in both cell lines Unexposed Control tBHQ (50 mM) SiO₂ (75 µg/mL)

mesothelial

epithelia

Scale bar = 10 mm

CASE STUDY: MIXTURES NANOTOXICOLOGY – ITS HARDLY EVER JUST ONE

Exposure to Nanoparticle Mixtures

Reported Exposure to Nanoparticle Mixtures	Reference
Manganese from nearby welding during Li ₄ Ti ₅ O ₁₂ handling	Peters, 2009
Iron and nickel as catalysts in carbon nanotube synthesis	Maynard, 2004
Silicon & asbestos from insulation during CNTsynthesis	Han, 2008
Combustion-derived particles from forklifts, heaters, & traffic	Kuhlbusch, 2006 & 2010

Therefore, nanoparticle exposures are often mixtures of combustion derived carbonaceous particles and transition metals

Nanoparticles Representative of Mixtures

Carbonaceous Particle

- Engineered Carbon Black
- Used as a surrogate for elemental carbon in particulate matter
- Extensively used in airborne toxicological studies

Transition Metal

- Iron oxide (Fe₂O₃)
- Represent transition metal oxides in particulate matter
- Water insoluble particle, but soluble in acidic pH

Guo and Sayes, P&FT, 2009

<u>Aim</u>

Determine if Co-exposures to Fe_2O_3 and ECB results in additive or synergistic cytotoxicological effects

Conclusion

"Co-exposure to carbon black and Fe_2O_3 particles can cause oxidative stress that is significantly greater than the additive effects of exposures to either particle type alone."

Oxidation Decreases Reductive Capacity

Chemically Active Groups on ECB Surface Gives Rise to Surface Redox Capabilities

 $H_2Q_{(s)} + 2Fe^{3+}_{(aq)} ----> Q_{(s)} + 2Fe^{2+}_{(aq)} + 2H^+$

Fenton Reaction:

 $Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH_1 + OH_2$

Hypothesis: Oxidative stress formed in a co-exposure of Fe_2O_3 and ECB can be eliminated by surface oxidation of ECB (termed: ox-ECB).

Surface Chemistry Analysis with XPS

XPS gives quantitative data on elemental composition and chemistry on the particle surface

	ECB (%)	Ox-ECB (%)	
%C [C/ C+O]	89.88	88.53	
%O [O/ C+O]	10.12	11.47	
O:C	0.1126	0.1295	

The O:C ratio in ox-ECB is 15% greater than in ECB. This may not seem like a large increase, but edge carbons comprise about 20% of the total carbon content for 50 nm amorphous carbon particles.

Ratio of $Q_{(s)}$: $H_2Q_{(s)}$ was found to be circa 5000 times greater in ox-ECB than in ECB.

$$H_2Q_{(s)} + 2Fe^{3+}_{(aq)} ----> Q_{(s)} + 2Fe^{2+}_{(aq)} + 2H^+$$

Intracellular Nanoparticle Incorporation

Intracellular Nanoparticle Incorporation

1. A majority of the Fe_2O_3 is internalized into the cells after 24 hours 2. Uptake of Fe_2O_3 is not altered following ECB co-exposure

Oxidant Production

Statistically significant to control population; P<0.05

- Significant increases seen in Fe₂O₃ and ECB coexposure groups
- Oxidant production eliminated by addition of L-ascorbic acid
- ox-ECB and Fe₂O₃ did not differ from control groups
- Effects greater at 25 hours than at 2.5 hours

Where Do We Go From Here?

THREE KEY AREAS OF GROWTH:

Mathematical/Computational-Based Predictive Models

Alternative Toxicity Testing

Characterization of Real-World Exposure Scenarios

Nanomaterial physicochemical features		Induced toxicological effects		Mathematical techniques		Cross validation
More fundamental	More complicated	Immediate	Systemic	Regression Analysis	Classification	Cross-validation
Primary particle size	Zeta potential (as a measure of surface charge)	Cell viability	Metabolism	Linear	Linear Discriminant Analysis	Inter-lab comparisons
Shape	Agglomerate size	Tissue damage	Distribution & accumulation	Non-linear	k-Nearest Neighbor	Beta-testers
Chemical composition	Adsorption of surrounding matrix	Cytokine production	Inflammation	Machine learning	Support Vector Machines	Additional physicochemical data
Specific surface area	Reductive capacity	Membrane damage	Immune response	Causal relationships	Decision Trees or Neural Networks	Additional toxicology data