Non-PFC Plasma Chemistries for

Patterning Complex Materials/Structures

(Task Number: 425.038)

<u>**PIs:**</u>

• Jane P. Chang, Chemical and Biomolecular Engineering, UCLA

Graduate Students:

- Jack Chen, PhD student, Chemical and Biomolecular Engineering, UCLA
- Nathan Marchack, PhD candidate, Chemical and Biomolecular Engineering, UCLA

Undergraduate Students:

• Michael Paine, UG student, Chemical and Biomolecular Engineering, UCLA

Other Researchers:

• (TBD)

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Objectives

- Assess the thermodynamic feasibility of patterning etchresistant materials (complex materials and structures)
- Identify the non-PFC alternative for through silicon via
- Establish collaboration with industrial members to validate the theoretical assessment (etching experiments)
- Identify priority test cases (such as TSV)

ESH Metrics and Impact

- 1. Reduction in the use of PFC gases by focusing on non-PFC chemistries
- 2. Reduction in emission of PFC gases to environment
- **3.** Reduction in the use of chemicals by tailoring the chemistries to the specific materials to be removed

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Approach for Etch-Resistant Materials

- Use more aggressive etch chemistries such as PFC
 - Fluorine is the most electro-negative element
 - Carbon reaction products (CO and CO₂) are volatile

- Change processing approach to not etch these materials
 - Damascene process^[1] for Cu
 - Area selective atomic layer deposition

TSV (Through Silicon Via)

From 2-D to 3-D packaging

TSV for 3D-LSI technology road map

• According to Moore's Law, the density of IC devices doubles every two years, the 3-D packaging system is required.

Challenges in TSV

• Requirement to increase etch rate, increase aspect ratio and reduce the usage of global warming gases

3-D Stack with TSV

2D-Conventional

3D-TSV

[P. Garrou, Samsung website, 2010]

- Advantages:
 - •Smaller footprint
 - •Smaller form-factor
 - •Less weight
 - Less power consumption
 - •Potentially lower cost

- Challenges:
 - •High etch rate
 - •High aspect ratio
 - •Large Depth
 - •High yield
 - •GWP gases

3-D Stack with TSV

2D-Conventional

3D-TSV

[P. Garrou, Samsung website, 2010]

	Features	Goal	Ref.
1	Etch rate	50 μm/min	I. Sakai, J. Vac. Sci. Technol. A, 2011
2	Aspect ratio (Anisotropy)	70-100	I. Sakai, IEEE, 2012
3	Side wall angle	90°±10°	M. Hooda, J. Vac. Sci. Technol. A, 2010

TSV Process Options

[C. Tang, J Micromech Microeng, 2012]

[Applied Materials Inc., website, 2012]

TSV Process Options

TSV Processes	Bosch DRIE*	Cryogenic DRIE [#]	Laser drill*
Width	<5µm	<5µm	<15µm
Aspect ratio	>20:1	>10:1	>7:1
Sidewalls	Vertical (90°)	Vertical &smooth	80°-90°
Temp. affection	Negligible	-110°C ~ -130°C	Yes
Process	ICP	ICP	Laser
Potential applications	High-end	High-end	Low-cost
Example	Microprocessors	Microprocessors	DRAM/Flash

[R. Landgraf, IEEE, 2008*; M. Walker, Proc. SPIE, 2001[#]]

• As the critical dimension continues to decrease, DRIE becomes the most feasible technology for TSV

Plasma Etch Process of a Silicon Wafer

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Systematic Approach - Thermodynamics

- Thermodynamic approach can be systematic
 - If such data is available
 - NIST-JANAF Thermo-chemical tables
 - HSC Chemistry for windows, chemical reaction and equilibrium software with extensive thermo-chemical database
 - FACT, Facility for Analysis of Chemical Thermodynamics
 - Barin and Knacke tables (thermo-chemical data for pure substances and inorganic substances)
 - Determination of dominant surface/gas-phase species
 - Assessment of possible reactions
- Graphical Representation of thermodynamic analysis
 - Richardson Ellingham diagram
 - Pourbaix diagram
 - Volatility diagram

Important Chemistries for Silicon Etch

Chemistries	Radical	Volatile Product	Inhibitor
H_2	Н	$HSiF_4$	Si_xF_y
CH_4	$ CH_3 CH_2 $	SiH ₄ SiF ₄	Si _x C _y H _z
F_2	F	SiF_4	$Si_{x}F_{y}$
NF ₃	F, NF ₂	SiF_4	$Si_xN_yF_z$
SiF_4	F, SiF ₃	SiF_4	$Si_{x}F_{y}$
CF_4	F, CF ₃	SiF_4	$Si_xC_yF_z$
SF ₆	F, SF ₅	SiF_4	Si _x S _y F _z
S_2F_2	F, S_2F	SiF_4	Si _x S _y F _z
Cl ₂	Cl	SiCl ₄	Cİ
Br ₂	Br	SiBr ₄	Br
CBr ₄	Br, CBr ₃	SiBr ₄	Br, Si _x C _y Br _z

Chemistries	Radical	Volatile Product	Inhibitor
CHF ₃	CF ₂	HF, SiF ₄	$Si_{x}C_{y}H_{z}$
CH_2F_2	CFH C	HF	Si _x C _y F _z H _a
CH ₃ F	CH2 CFH	$\mathrm{HF},\mathrm{H}_{2}$	Si _x C _y F _z H _a
		COF2,	
CF_4/O_2	F, O, CF_3	O2F, OF,	$Si_xO_vF_z$
4 2	· · J	F2, SiF_4	5
CE /U	Е Ц СЕ	CHF, HF,	Si C E
$C\Gamma_4/\Pi_2$	г, п, сг ₃	SiF_4	$SI_X C_y \Gamma_Z$
SF_6/O_2	SF ₅ , O, F	SOF4, SiF ₄	$Si_{x}O_{y}F_{z}$
SF_6/H_2	SF ₅ , H, F	HF, SiF ₄	$Si_xS_yF_z$
SF_6/N_2	SF ₅ , N ₂ , F	SiF_4	Si _x S _v F _z
SF ₆ /CHF ₃	SF ₅ , F, CF ₂	HF, SiF ₄	Si _x C _y F _z
CBrF ₃	F, Br	SiBr ₄	Br, Si _x C _y F _z Si _x C _y Br _z
CCl ₄	CCl ₃ , Cl, C	SiCl ₄	Cl

→Fluorine-based gases remains the most effective chemistry

[H. Jansen, 1996]

Global Warming Potentials (GWP)

Chemistries	Atmospheric conc. in 2005 (ppt)	Con. since 1994* & 1998 (ppt)	Annual emission in late 1990s (Gg)	Rafactive efficiency (W/m ² –ppbv)	Lifetime (year)	Global warming potential	Ref.
CO ₂	278×10^{6}	358x10 ⁶ *	-	-	variable	1	b
CH_4	7x10 ⁵	1721x10 ³ *	-	-	12.2	21	b
N ₂ O	275x10 ³	311x10 ³ *	-	-	120	310	b
CHClF ₂	-	105x10 ³ *	-	-	12.1	1400	b
CF_4	74	-	~15	0.1	50,000	6500	а
CCl_2F_2	-	503x10 ³ *	-	-	102	7100	b
C_2F_6	2.9	3.4	~2	0.26	10,000	9200	а
CHF ₃	18	22	~7	0.19	270	11700	а
SF ₆	5.6	7.1	~6	0.52	3,200	23900	a
NF ₃) <0.1	-	~2.3	0.21	740	16800	a

[W. Tsai, J Hazard Mater, 2008^a; United Nations Environment Program(UNEP), 2010^b]

- → GWPs are one type of simplified index based upon radiative properties which estimate the potential future impacts of gases
- \rightarrow At the annual review, industiral members suggested a study on NF₃

<u>Is NF₃ a Greenhouse Gas?</u>

- $NF_3 + 2H_2O \rightarrow 3HF + HNO_2$
- $2NF_3 + 3H_2O \rightarrow 6HF + NO + NO_2$
- $2NF_3 + 3H_2 \rightarrow N_2 + 6HF$
- NF₃ and its reaction products are designated as toxic substances in Toxic Substances Control Act (TSCA)

Title	Authors	Year	Journal	#Citation
NF ₃ ,the greenhouse gas missing from Kyoto	Prather, M.J. and J. Hsu	2010	Geophysical Research Letters	55444
Environmental and health risk analysis of NF_3 , a toxic and potent greenhouse gas	Tsai, W. T.	2008	Journal of Hazardous Materials	28060

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Etch Rate of Si /poly-Si*

Etchant	Etch rate (nm/min)	Power (W)	Pressure (mtorr)	Ref
SF ₆ /O ₂ /CHF ₃	3000	500		[c]
HBr(10sccm), $Cl_2(70sccm)$, and $SF_6(6sccm)$	1100*		100	[e]
SF ₆ /O ₂ (25%)	880	300	25	[d]
$SF_6(80\%), C_2Cl_3F_3(20\%),$	700	140	47	[i]
$SF_6(40sccm), O_2(14sccm), CHF_3(17sccm)$	670		60	[j]
SF ₆ /O ₂ (25%)	490		100	[d]
F/F ₂	460			[k]
CF_4/O_2	460			[k]
$CBrF_{3}(80\%), SF_{6}(10\%), Ar(10\%)$	410	190	50	[h]
$CBrF_{3}(90\%), SF_{6}(10\%)$	310	100	50	[h]
SF ₆	300		20	[g]
CF_4/O_2	300			[k]
O2(12%)/CF4(90%)/N ₂ (8%)	260*			[e]
CBrF ₃	60	100	50	[h]
SiF ₄ /O ₂	44			[k]
CBrF ₃	40	100	20	[g]
CF_4	30			[k]
CF_4	20*			[f]

Etch Rate of SiO₂/Si₃N₄/SiC by NF₃

Etchant	Etch rate_SiO ₂ (nm/min)	Etch rate_Si ₃ N ₄ (nm/min)	Power (W/cm ²)	Pressure (mtorr)	Ref
NF ₃ (25%)/N ₂	860	7400	1.4	550	[1]
NF ₃ (25%)/Ar	670	8000	1.4	550	[1]
NF ₃ (25%)/He	560	7400	1.4	550	[1]
NF ₃ (25%)/O ₂	520	5200	1.4	550	[1]
NF ₃ (25%)/N ₂ O	280	3600	1.4	550	[1]
NF ₃ (100%)	90	1000	1.4	550	[1]

Etchant	Etch rate_SiC (nm/min)	Bias (W)	Power (W)	Pressure (mtorr)	Ref
NF ₃	437	150	900	12	[m]
NF ₃ /O ₂	350	250	750	2	[n]
$NF_{3}(60\%)/CH_{4}(40\%)$	111	150	800	6	[m]

• Not much is found on NF₃ for silicon etching but it has been used for etching other silicon containing materials

Silicon Etching by Fluorine

	Reactions	G(eV)	log(K)
1	$Si(c) \rightarrow Si(g)$	4.2	-70.5
1'	$1/2F_2(g) + Si(c) \rightarrow SiF(g)$	-0.54	9.0
2	$F(g) + Si(c) \rightarrow SiF(g)$	-1.18	19.8
3	$F(g) + SiF(g) \rightarrow SiF_2(g)$	-6.31	105.9
4	$F(g) + SiF_2(g) \rightarrow SiF_3(g)$	-5.57	93.4
5	$F(g) + SiF_3(g) \rightarrow SiF_4(g)$	-5.82	97.7

• Fluorine is the most effective etching chemistry for silicon, especially atomic fluorine, as produced by plasma

Production of Fluorine from SF₆ and NF₃

	Reactions	G(eV)	Log(K)
S1	$SF_6(g) \rightarrow SF_5(g) + F(g)$	3.52	-59.1
S2	$SF_5(g) \rightarrow SF_4(g) + F(g)$	1.85	-31.0
S3	$SF_4(g) \rightarrow SF_3(g) + F(g)$	3.07	-51.5
S4	$SF_3(g) \rightarrow SF_2(g) + F(g)$	2.56	-42.9
S5	$SF_2(g) \rightarrow SF(g) + F(g)$	3.64	-61.1
S6	$SF(g) \rightarrow S(g) + F(g)$	3.25	-54.6

	Reactions	G(eV)	Log(K)
N1	$NF_3(g) \rightarrow NF_2(g) + F(g)$	2.17	-36.4
N2	$NF_2(g) \rightarrow NF(g) + F(g)$	2.58	-43.3
N3	$NF(g) \rightarrow N(g) + F(g)$	2.84	-47.7

[CRC handbook, 2010]

[CRC handbook, 2010*; Y. Tanaka, IEEE, 1997]

• Under equilibrium conditions, the production of atomic F from SF₆ and NF₃ are comparable

Production of Fluorine from SF₆ and NF₃

	Reactions	G(eV)	Log(K)
S1	$SF_6(g) \rightarrow SF_5(g) + F(g)$	3.52	-59.1
S2	$SF_5(g) \rightarrow SF_4(g) + F(g)$	1.85	-31.0
S3	$SF_4(g) \rightarrow SF_3(g) + F(g)$	3.07	-51.5
S4	$SF_3(g) \rightarrow SF_2(g) + F(g)$	2.56	-42.9
S5	$SF_2(g) \rightarrow SF(g) + F(g)$	3.64	-61.1
S6	$SF(g) \rightarrow S(g) + F(g)$	3.25	-54.6
	Reactions	G(eV)	
S1	$SF_6(g) + e \rightarrow SF_5(g) + F(g) + e$	4.00	•
S2	$SF_5(g) + e \rightarrow SF_4(g) + F(g) + e$	2.27	d
S3	$SF_4(g) + e \rightarrow SF_3(g) + F(g) + e$	3.47	- u
S4	$SF_3(g) + e \rightarrow SF_2(g) + F(g) + e$	2.92	<u> </u>

 $SF_2(g) + e \rightarrow SF(g) + F(g) + e$

 $SF(g) + e \rightarrow S(g) + F(g) + e$

S5

S6

	Reactions	G(eV)	Log(K)
N1	$NF_3(g) \rightarrow NF_2(g) + F(g)$	2.17	-36.4
N2	$NF_2(g) \rightarrow NF(g) + F(g)$	2.58	-43.3
N3	$NF(g) \rightarrow N(g) + F(g)$	2.84	-47.7

[CRC handbook, 2010]

[CRC handbook, 2010*; Y. Tanaka, IEEE, 1997]

• For SF₆, electron impact dissociate energy is comparable and slightly higher than that from thermal equilibrium data (~0.4eV)

4.01

3.52

Production of Fluorine from SF₆ and NF₃

	Reactions	G(eV)	Log(K)
S1	$SF_6(g) \rightarrow SF_5(g) + F(g)$	3.52	-59.1
S2	$SF_5(g) \rightarrow SF_4(g) + F(g)$	1.85	-31.0
S3	$SF_4(g) \rightarrow SF_3(g) + F(g)$	3.07	-51.5
S4	$SF_3(g) \rightarrow SF_2(g) + F(g)$	2.56	-42.9
S5	$SF_2(g) \rightarrow SF(g) + F(g)$	3.64	-61.1
S6	$SF(g) \rightarrow S(g) + F(g)$	3.25	-54.6
	Reactions	G(eV)	
S1	Reactions $SF_6(g) + e \rightarrow SF_5(g) + F(g) + e$	G(eV) 4.00	-
S1 S2	Reactions $SF_6(g) + e \rightarrow SF_5(g) + F(g) + e$ $SF_5(g) + e \rightarrow SF_4(g) + F(g) + e$	G(eV) 4.00 2.27	•
S1 S2 S3	Reactions $SF_6(g) + e \rightarrow SF_5(g) + F(g) + e$ $SF_5(g) + e \rightarrow SF_4(g) + F(g) + e$ $SF_4(g) + e \rightarrow SF_3(g) + F(g) + e$	G(eV) 4.00 2.27 3.47	- di
S1 S2 S3 S4	Reactions $SF_6(g) + e \rightarrow SF_5(g) + F(g) + e$ $SF_5(g) + e \rightarrow SF_4(g) + F(g) + e$ $SF_4(g) + e \rightarrow SF_3(g) + F(g) + e$ $SF_3(g) + e \rightarrow SF_2(g) + F(g) + e$	G(eV) 4.00 2.27 3.47 2.92	- di an
S1 S2 S3 S4 S5	Reactions $SF_6(g) + e \rightarrow SF_5(g) + F(g) + e$ $SF_5(g) + e \rightarrow SF_4(g) + F(g) + e$ $SF_4(g) + e \rightarrow SF_3(g) + F(g) + e$ $SF_3(g) + e \rightarrow SF_2(g) + F(g) + e$ $SF_2(g) + e \rightarrow SF(g) + F(g) + e$	G(eV) 4.00 2.27 3.47 2.92 4.01	- di an fre

	Reactions	G(eV)	Log(K)
N1	$NF_3(g) \rightarrow NF_2(g) + F(g)$	2.17	-36.4
N2	$NF_2(g) \rightarrow NF(g) + F(g)$	2.58	-43.3
N3	$NF(g) \rightarrow N(g) + F(g)$	2.84	-47.7

[CRC handbook, 2010]

[CRC handbook, 2010*; Y. Tanaka, IEEE, 1997]

• For SF₆, electron impact dissociate energy is comparable and slightly higher than that from thermal equilibrium data (~0.4eV)

• It is possible that the available equilibrium data on NF_3 can be used as a guide to the production of fluorine in a plasma

$\frac{\text{Can SF}_{6} \text{ be Replaced by NF}_{3}?}{\text{SF}_{6}}$

Formation of non-volatile byproduct	G(eV)	Formation Si ₃ N ₄ (c)	G(eV)
$4\mathrm{Si}(\mathbf{c}) + 2\mathrm{SF}_6(\mathbf{g}) \rightarrow 3\mathrm{SiF}_4(\mathbf{g}) + \underline{\mathrm{S}_2\mathrm{Si}(\mathbf{c})}$	-28.0	$6\mathrm{Si}(\mathbf{c}) + 4\mathrm{NF}_{3}(\mathbf{g}) \rightarrow 3\mathrm{SiF}_{4}(\mathbf{g}) + \underline{\mathrm{Si}_{3}}\underline{\mathrm{N}_{4}(\mathbf{c})}$	-51.8
Removal of non-volatile byproduct	G(eV)	Removal of non-volatile byproduct	G(eV)
$\underline{S_2Si(c)} + 16F(g) \rightarrow SiF_4(g) + 2SF_6(g)$	-47.5	$\underline{\text{Si}_3N_4(c)} + 24F(g) \rightarrow 3\text{Si}F_4(g) + 4\text{NF}_3(g)$	-61.4

- From the thermodynamics analysis, NF₃ is more capable of removing silicon via the formation of SiF₄
- However, another significant reaction product from reaction with NF₃ is Si₃N₄, which has to be removed and competes for fluorine

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

<u>A Strategy to Remove Si₃N₄</u>

$NF_3 - O_2$		SF ₆		
Formation Si ₃ N ₄ (c)	G(eV)	Formation of non-volatile byproduct	G(eV)	
$6\mathrm{Si}(c) + 4\mathrm{NF}_3(g) \rightarrow 3\mathrm{SiF}_4(g) + \underline{\mathrm{Si}_3\mathrm{N}_4(c)}$	-51.8	$Si(c) + SF_6(g) \rightarrow SiF_4(g) + S_2Si(c)$	-28.0	
Removal Si₃N₄(c) by NF₃	G(eV)	Removal of non-volatile byproduct	G(eV)	
$\underline{\text{Si}_3}\underline{N_4(c)} + 24F(g) \rightarrow 3\text{SiF}_4(g) + 4\text{NF}_3(g)$	-61.4	$\underline{S_2Si(c)} + 16F(g) \rightarrow SiF_4(g) + 2SF_6(g)$	-47.5	

Removal of Si₃N₄(c) & SiO₂(c) by NF₃ & O₂		
Removal of Si₃N₄(c)	$\underline{Si_3N_4(c)} + 7O_2(g) \rightarrow \underline{3SiO_2(c)} + 4NO_2(g)$	-17.8
Removal of SiO₂(c)	$\underline{\text{SiO}_2(c)} + 5/2NF_3(g) \rightarrow \text{SiF}_4(g) + 1/2NO_2F(g) + \text{NOF}_3(g) + N_2(g)$	-6.5
Total reaction	$\frac{\text{Si}_3\text{N}_4(c)}{+6\text{NOF}_3(g)} + 7\text{O}_2(g) + 15/2\text{NF}_3 \rightarrow 3\text{SiF}_4(g) + 4\text{NO}_2(g) + 3/2\text{NO}_2\text{F}(g) + 6\text{NOF}_3(g) + 6\text{N}_2(g)$	-37.1

• From the analysis of ΔG , the non-volatile byproducts, Si_3N_4 could be removed by $NF_3 - O_2$ plasmas

Silicon Etching by $NF_3 - O_2$ $O_{2(g)}$ NF_{3(g)}

	Reactions	G(eV)	log(K)	P _{O2} (torr)	Reaction 4	G(eV)	log(K)
1	$Si(c) \rightarrow Si(g)$	4.2	-70.5	0.76	$Si_3N_4(c) + 7O_2(g) + 15/2NF_3$		
2	$4NF_3(g) + 6Si(c) \rightarrow Si_3N_4(c) + 3SiF_4(g)$	-51.8	870.2	7.6x10 ⁻⁸	\rightarrow 3SiF ₄ (g) + 4NO ₂ (g) +	-37.1	623.4
3	$4NF_3(g) + 9Si(c) \rightarrow Si_3N_4(c) + 6SiF_2(g)$	-40.1	673.97	7.6x10 ⁻¹⁸	$+6N_2(g)$		

Future Plans

Next Year Plans

- Identify potential low impact gases in target applications
- Perform thermodynamic calculations to assess potential impact and projected effectiveness
- Implement target chemistries and carry out plasma etching assessment

Long-Term Plans

- Formulate the models to predict emission from plasma processes
- Assess the effectiveness of the plasma chemistries compared to that of the PFC gases

Publications, Presentations, and Recognitions/Awards

- Invited talk to AVS International Symposium, October 2012
- Presentation at the Plasma Processing Science Gordon Research Conference (GRC), July 2012

Industrial Interactions and Technology Transfer

- Video conference to Intel, January 31, 2012 (Karson Knutson, Doosik Kim)
- Conference call with Novellus, March 2012 (Ron Powell, Roey Shaviv, Juwen Gao)
- Student interview at IBM, February 29, 2012
- Student interview with Intel, March 2012
- Student will present at the Gordon Research Conference, July, 2012
- → After studying the TSV by detailed thermodynamic analysis, the next step is to carry out kinetic measurements.
- → Complex oxides? Magnetic materials? Noble metals?

Reference

- c. Jansen, H., et al., The Black Silicon Method a Universal Method for Determining the Parameter Setting of a Fluorine-Based Reactive Ion Etcher in Deep Silicon Trench Etching with Profile Control. Journal of Micromechanics and Microengineering, 1995. 5(2): p. 115-120.
- d. Mansano, R.D., P. Verdonck, and H.S. Maciel, Deep trench etching in silicon with fluorine containing plasmas. Applied Surface Science, 1996. 100: p. 583-586.
- e. Yeom, G.Y., Y. Ono, and T. Yamaguchi, Polysilicon Etchback Plasma Process Using Hbr, Cl2, and Sf6 Gas-Mixtures for Deep-Trench Isolation. Journal of the Electrochemical Society, 1992. 139(2): p. 575-579.
- f. Matsuo, P.J., et al., Role of N-2 addition on CF4/O-2 remote plasma chemical dry etching of polycrystalline silicon. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 1997. 15(4): p. 1801-1813.
- g. Syau, T., B.J. Baliga, and R.W. Hamaker, Reactive Ion Etching of Silicon Trenches Using Sf6/O-2 Gas-Mixtures. Journal of the Electrochemical Society, 1991. 138(10): p. 3076-3081.
- h. Demic, C.P., K.K. Chan, and J. Blum, Deep Trench Plasma-Etching of Single-Crystal Silicon Using Sf6/O2 Gas-Mixtures. Journal of Vacuum Science & Technology B, 1992. 10(3): p. 1105-1110.
- i. Yunkin, V.A., D. Fischer, and E. Voges, Highly Anisotropic Selective Reactive Ion Etching of Deep Trenches in Silicon. Microelectronic Engineering, 1994. 23(1-4): p. 373-376.
- j. Legtenberg, R., et al., Anisotropic Reactive Ion Etching of Silicon Using Sf6/O-2/Chf3 Gas Mixtures. Journal of the Electrochemical Society, 1995. 142(6): p. 2020-2028.
- k. Moss, S.J. and A. Ledwith, The chemistry of the semiconductor industry. 1987, Glasgow: Blackie. xiv, 426 p.
- I. Langan *et al.*, Method for plasma etching or cleaning with diluted NF.sub.3, US Patent 5413670, 1995.
- m. Wang, J.J., et al., High rate etching of SiC and SiCN in NF3 inductively coupled plasmas. Solid-State Electronics, 1998. 42(5): p. 743-747.
- n. Kim, B., et al., Use of a neural network to model SiC etching in a NF3 inductively coupled plasma. Modelling and Simulation in Materials Science and Engineering, 2005. 13(8): p. 1267-1277.