Fate and Transport of Multiwalled Carbon Nanotubes in Aquatic Systems

Kai Loon Chen

Department of Geography and Environmental Engineering Johns Hopkins University

Overview

- Background on carbon nanotubes (CNTs)
- Objective
- Preparation and characterization of multiwalled carbon nanotubes (MWNTs)
- Aggregation kinetics of MWNTs
- Kinetics and reversibility of MWNT deposition on silica surfaces
- Conclusions

Carbon Nanotubes

mrbarlow.wordpress.com

www.basesciences.com

www.bayerus.com

Sekitani et al., *Nature Materials*, **2009**, 494-499

Mechanical properties: high strength; light weight

Electronic properties: semiconducting or metallic

Toxicity of Carbon Nanotubes

- Cause pulmonary inflammation and fibrosis in lungs of mice
- Damage bacterial membrane and inhibit bacterial growth

Kang et al., *Langmuir* **2007**, 23, 8670-8673

Release of Carbon Nanotubes into the Environment

Potential Routes of Release

- Consumer products that contain CNTs as they undergo wear and tear
- Factories producing CNTs and CNT-based products
- CNT-based products disposed in waste disposal facilities, e.g., incinerators and landfills

Surface of CNTs can be oxidized in natural and engineered aquatic systems

Aggregation and Deposition Behavior Controls Fate and Transport of CNTs

Aggregation and deposition can be conceptualized as a two-stage process: transport and attachment

Attachment Depends on Surface and Solution Chemistries

Derjaguin–Landau– Verwey–Overbeek (DLVO) Theory:

Total energy of interaction = van der Waals attraction + electrostatic interaction

Particle shape and size, material, surface properties, solution chemistry

Objective

To investigate the influence of surface oxidation and solution chemistry on the aggregation and deposition of MWNTs in aqueous solutions

Preparation of Two MWNTs with Different Degrees of Surface Oxidation

- MWNTs purchased from NanoLab (8 to 10 walls) were used as starting material
- Expose MWNTs to a 3:1 mixture of 98% H₂SO₄ and 69% HNO₃ or a 4-time diluted acid mixture at 70°C for 8 hours
- Repeated cycles of dilution with DI water, centrifugation, and decantation of the supernatant
- The highly and lowly oxidized MWNTs (HO-MWNTs and LO-MWNTs) were dried overnight at 100°C and then pulverized in a ball-mill

Surface Characterization of MWNTs

The distribution of carboxyl (COOH), hydroxyl (C-OH), and carbonyl (C=O) groups was quantified by X-ray photoelectron spectroscopy (XPS) in conjunction with vapor phase chemical derivatization

Chen et al., *Environmental Chemistry* **2010**, 7, 10-27

Surface Characterization of MWNTs

The distribution of carboxyl (COOH), hydroxyl (C-OH), and carbonyl (C=O) groups was quantified by X-ray photoelectron spectroscopy (XPS) in conjunction with vapor phase chemical derivatization

Oxygen-Containing Functional Groups

Electrokinetic Properties of MWNTs in NaCl and CaCl₂ Solutions

Electrophoretic mobility (EPM)
Brookhaven ZetaPALS
pH 7.1 – carboxyl groups are deprotonated

Time-Resolved Dynamic Light Scattering

- Brookhaven BI-200SM goniometer
- Lexel 95 argon laser
- Wavelength 488 nm
- Scattering angle 90°

Determining Aggregation Kinetics using Time-Resolved Dynamic Light Scattering

Determining Aggregation Kinetics using Time-Resolved Dynamic Light Scattering

Initial aggregation kinetics:

$$k = \left(\frac{dD_h(t)}{dt}\right)_{t \to 0}$$

Attachment efficiency:

Nacl Concentration (mM)

Na⁺ screens the surface charge of MWNTs, and results in an increase in aggregation kinetics

Na⁺ screens the surface charge of MWNTs, and results in an increase in aggregation kinetics

A lower NaCl concentration is required to destabilize the less negatively charged LO-MWNTs

Ca²⁺ binds to carboxyl groups, effectively neutralizing the surface charge of MWNTs

Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D)

Laminar flow at 0.6 mL/min
[MWNT] = 0.5–1.2 mg/L
T = 25°C, pH = 7.1

Principle of QCM-D: Frequency Flow Cell:

Deposited mass is proportional to frequency shift with C as the constant of proportionality

Principle of QCM-D: Dissipation

Oscillatory motion in attached film results in energy dissipation
D is related to viscoelastic properties of film

Deposition of MWNTs on Silica Surfaces

Deposition of MWNTs on Silica Surfaces

Scanning Electron Microscopy (SEM) Imaging of MWNTs

 HO-MWNTs deposited on poly-Llysine (PLL)-coated silica surface at 1.5 mM CaCl₂
Corresponds to

 $\Delta f_{(3)}$ of –36 Hz and $\Delta D_{(3)}$ of 1.7 imes 10⁻⁵

Rates of Frequency and Dissipation Shift are Proportional to Deposition Rate

Deposition on PLL-modified surfaces at 1 mM NaCl and pH 7.1

Deposition Rates on Silica Surfaces

Favorable (Transport-Limited) Deposition Rates

Attachment Efficiency:

 $\frac{d\Delta f / dt}{\left(d\Delta f / dt \right)_{t}}$ α

Yi and Chen, Langmuir 2011, 27, 3588–3599.

Attachment Efficiency:

 $= \frac{d\Delta D / dt}{\left(d\Delta D / dt \right)_{fav}}$

Yi and Chen, Langmuir 2011, 27, 3588–3599.

Attachment Efficiency:

$$\alpha = \frac{d\Delta f \,/\, dt}{\left(d\Delta f \,/\, dt\right)_{fav}}$$

 $d\Delta D/dt$

Yi and Chen, Langmuir 2011, 27, 3588-3599.

The CDC in NaCl is much higher than the CDC in CaCl₂

Yi and Chen, Langmuir 2011, 27, 3588-3599.

Influence of Surface Oxidation on **Deposition Kinetics of MWNTs**

Yi and Chen, Langmuir 2011, 27, 3588-3599.

Influence of Surface Oxidation on Deposition Kinetics of MWNTs

34

- Degree of release increases when:
 - CaCl₂ Concentration
 - CaCl₂ ⇒ NaCl
 - pH of solution 1
- Increase in surface potential of both MWNTs and silica surface may lead to decrease in the depth of primary energy minimum

Ruckenstein and Prieve, *AIChE Journal*, **1976**, 276-283

Conclusions

- Classic aggregation and deposition behavior with favorable and unfavorable regimes is observed for MWNTs
- HO-MWNTs are more stable to aggregation and deposition than LO-MWNTs in NaCl. However, stabilities of both MWNTs are similar in CaCl₂.
- Deposited MWNTs are released from silica surfaces during a change in solution chemistry that leads to an increase in the magnitude of their surface potential

Acknowledgements

- Ph.D. student Peng Yi
- Dr. Howard Fairbrother's group (Dept. of Chemistry)
- Oak Ridge Associated Universities

E-mail: <u>kailoon.chen@jhu.edu</u> Website: <u>http://jhu.edu/crg/</u>

