Evaluation of the Role of Oxidative Stress, Inflammation and Apoptosis in the Pulmonary and the Hepatic Toxicity Induced by the Intratracheal Instillation of Cerium Oxide Nanoparticles in Male Sprague-Dawley rats

> Eric Blough, Ph.D. Department of Pharmaceutical Research and Science School of Pharmacy Marshall University

Ultrafine particles with lengths in two or three dimensions greater than 1 nanometer (nm) and smaller than about 100 nm

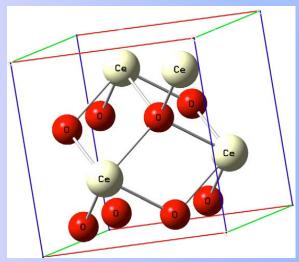
NIOSH: "Safety of nanoparticles"

"Nanotechnology is an emerging field. As such, there are many uncertainties as to whether the unique properties of engineered nanomaterials also pose occupational health risks"

Clayton Teague, NNI, 2005

Main types of manufactured nanomaterials

- Fullerenes (C60)
- Single-walled carbon nanotubes (SWCNTs)
- Multi-walled carbon nanotubes (MWCNTs)
- Silver nanoparticles
- Iron nanoparticles
- Carbon black
- Titanium dioxide
- Aluminium oxide
- Zinc oxide
- Silicon dioxide
- Cerium oxide
- Polystyrene
- Dendrimers
- Nano clays



Cerium oxide (CeO₂) nanoparticles

Cerium

- Rare earth metal
- Strong oxidizing agent
- Very reactive and can undergo redox cycling

Identified as a material of potential concern

CeO₂ nanoparticles

- Used as catalysts to improve diesel fuel efficiency and reduce toxic emissions
- Cerium based diesel fuel additives
 - Envirox [™]
 - Rhodia
- Widely used as polishing agents
- Potential biomedical applications as antioxidants
- Several industrial applications

CeO₂ nanoparticles and cellular toxicity

- CeO₂ nanoparticles (20nm) can reduce cell viability and can induce oxidative stress in human bronchoalveolar carcinoma (A549) and lung epithelial cell lines (BEAS2B) (Park et al., 2008)
- In vivo studies using male Sprague-Dawley rats showed that CeO₂ nanoparticles (20nm) can cause dose-dependent pulmonary inflammation and lung injury (Ma J Y et al., 2011)
- CeO₂ nanoparticles (20nm) can cause inflammatory mediated oxidative stress and apoptosis in alveolar macrophages (Ma J Y et al., 2011)

Mechanism(s) of CeO₂ toxicity is not well understood

Background

Routes of Exposure

- Nanoscale CeO₂ (<100 nm) was detected in diesel exhaust emissions employing nanoscale cerium based fuel additive (HEI, 2001; Jung et al., 2005)
- Most common routes of exposure are
 - Inhalation
 - Ingestion
- Inhalation exposure is the greatest concern as little is absorbed through ingestion (Flemming R. Cassee et al., 2008)

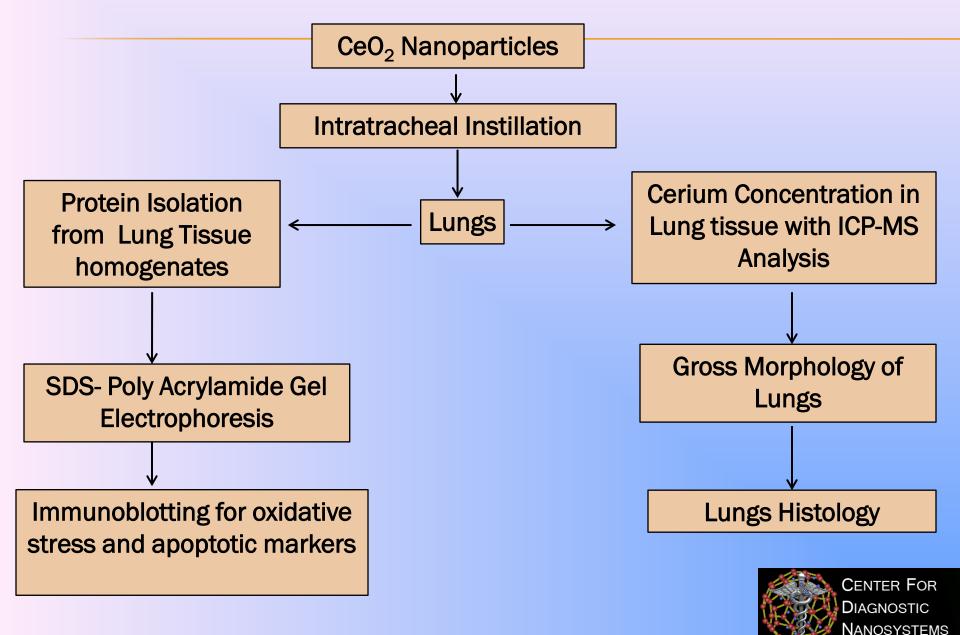
Purpose

To improve our understanding of how exposure to CeO_2 nanoparticles may affect the lungs and other organ systems.

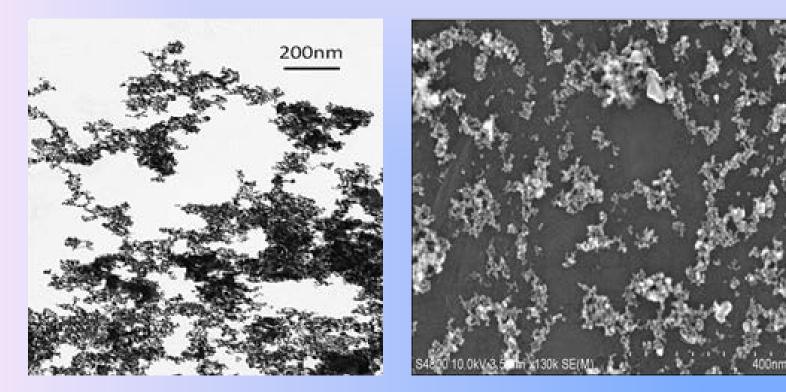
Aim I

To investigate the role of stress responsive MAPKs and inflammatory protein signaling in the oxidative stress and apoptosis induced by CeO_2 nanoparticle exposure in the lungs

Materials and Methods


- Male Sprague-Dawley rats
- CeO₂ (20 nm) nanoparticles obtained from Sigma Aldrich and suspended in normal saline (Vehicle)
- Dose- 7.0 mg/kg
- Route of Exposure: single intratracheal instillation

Study Design	Day 0		
	Normal Saline instillation	CeO_2 instillation	
Sacrifice at day 1	N=6	N=6	
Sacrifice at day 3	N=6	N=6	
Sacrifice at day 14	N=6	N=6	
Sacrifice at day 28	N=6	N=6	
Sacrifice at day 56	N=6	N=6	
Sacrifice at day 90	N=6	N=6	

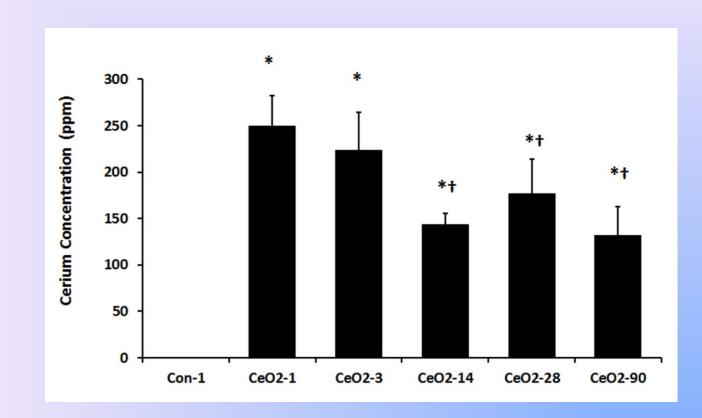

Methods

Characterization of the cerium oxide nanoparticles by (a) TEM micrograph and (b) Field emission SEM of a dilute cerium oxide suspension

b

Scale bar = 200 nm

CeO₂ nanoparticle exposure increases the lung weight to body weight ratio


Days of					Coefficient o	of lung weight
exposure	Body weight (g)		Lung weight (g)		to bodyweight	
				CeO2-		
	Saline Control	CeO2-7.0mg/kg	Saline Control	7.0mg/kg	Saline Control	CeO2-7.0mg/kg
1	319.67±15.92	319.67±15.20	1.74±0.0.28	1.88±0.08	5.42±0.66	5.84 ±0.24
3	310.33±28.10	331.67±24	1.54±0.27	2.19±0.15	4.97± 0.68	6.64± 0.66 [†]
14	345.67±27.11	332.33±21.07	1.90±0.31	2.12±0.23	5.55±0.66	6.40± 0.89 [†]
28	411.33±29.2 ^{*µ}	403.67±28.94 ^{*µ}	1.82±0.09	2.43±0.30	4.44 ±0.38	6.03 ±0.69 [†]
56	451.67±26.21 ^{*αμ}	451.33±34.6 ^{*αμ¶}	1.56±0.24	2.84±0.58	3.50± 0.57 ^{*αμ}	6.30±1.19 [†]
90	523.33±60.87 ^{*αμ¶#}	519.33±44.84 [*] αμ¶#	1.62±0.11	2.75±0.51	3.11±0.27 [*] αμ¶	5.27±0.64 ^{†α}

⁺ Significant different from the control in each day of exposure

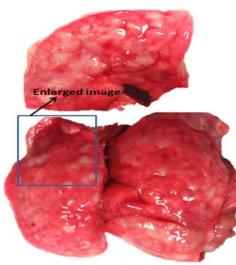
- *Significant different from the 1 Day exposure group in each condition
- ^a Significant different from the 3 Day exposure group in each condition
- μ Significant different from the 14 Day exposure group in each condition
- ¶ Significant different from the 28days exposure group
- # Significant different from the 56days exposure group

Cerium deposition in the lung appears to diminish over time

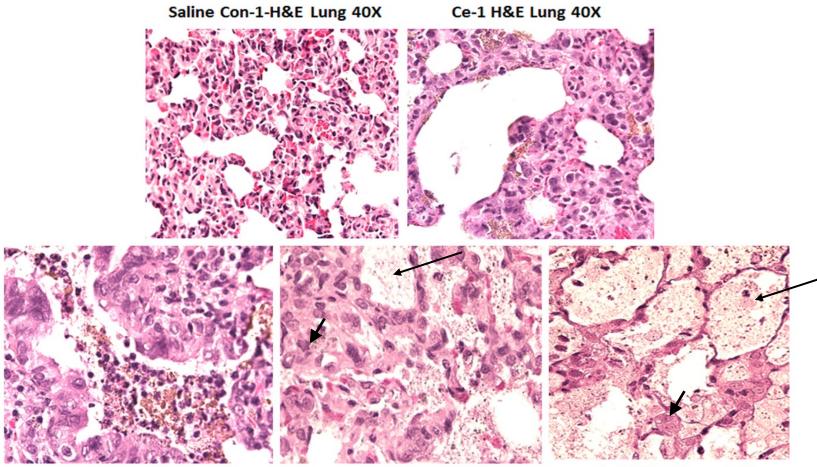
* Significantly different from the saline control day-1
+ Significantly different from the CeO₂-day-1

Gross morphological alterations in the lungs following CeO₂ nanoparticle instillation

Saline-control-Day1-lungs

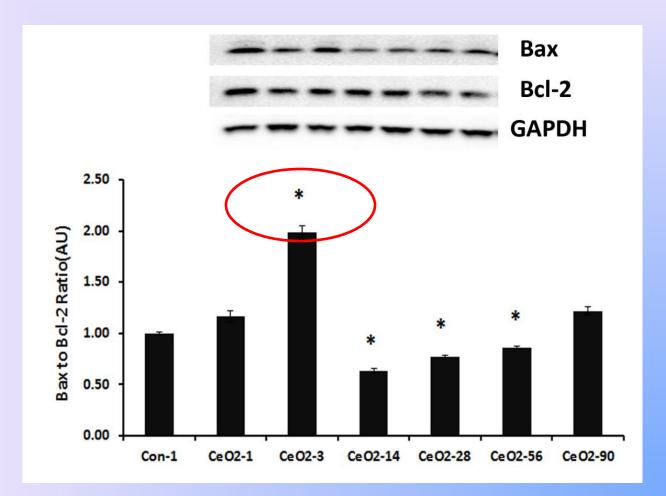

CeO₂ 7.0 mg/kg-lungs-56days

CeO₂ 7.0 mg/kg-lungs-28days


CeO₂ 7.0 mg/kg-lungs-90days

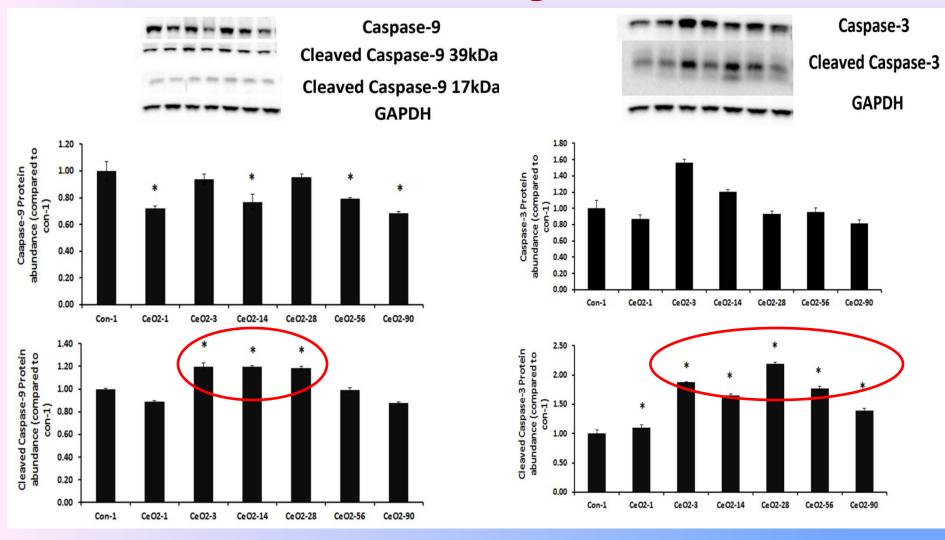
CeO₂-7.0mg/kg- Lungs-56 days

Alterations in histological appearance of the lungs following CeO₂ nanoparticle instillation

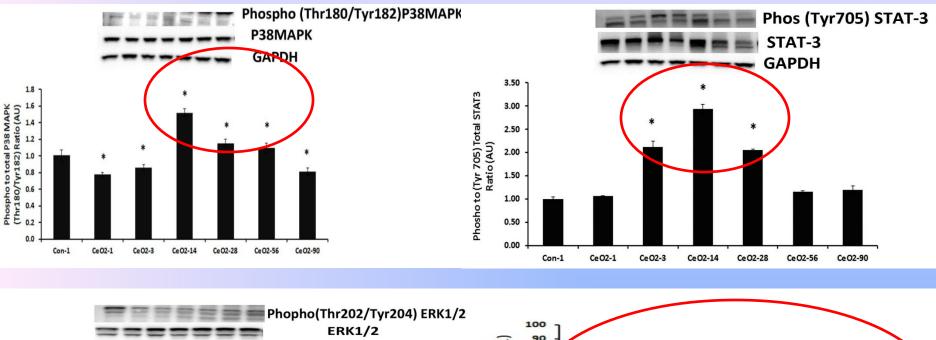

Ce-3 H&E Lung 40X

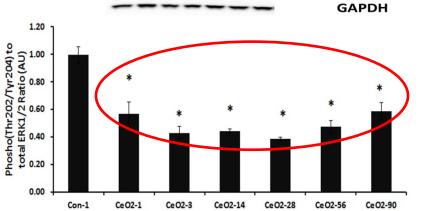
Ce-14 H&E Lung 40X

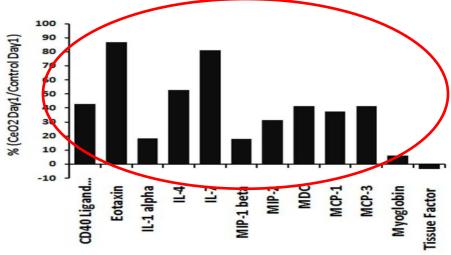
Ce-28 H&E Lung 40X

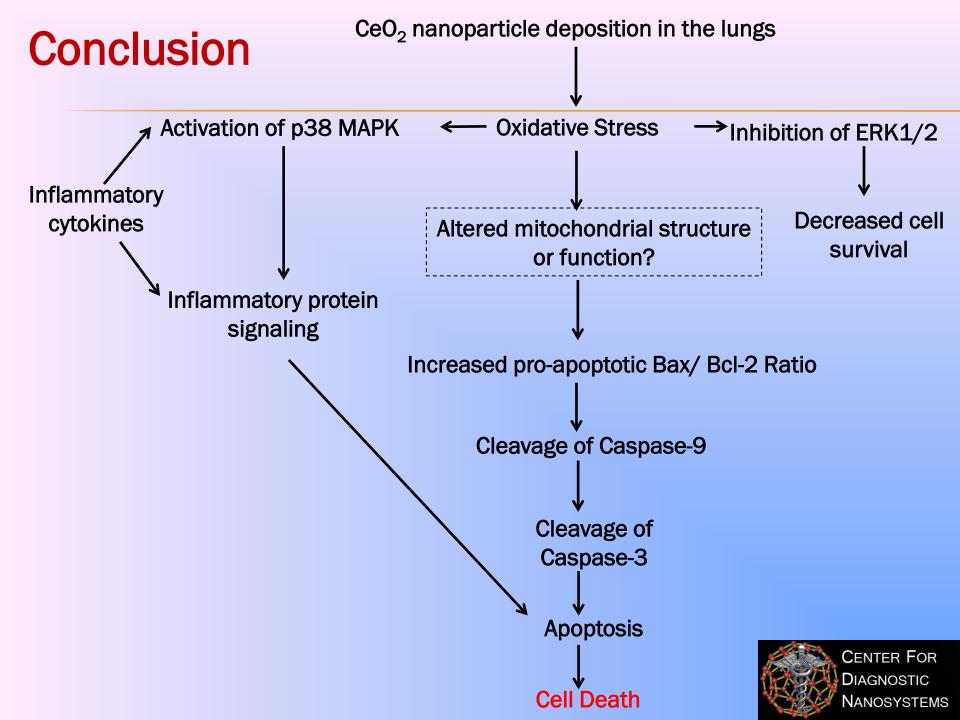

CeO₂ nanoparticle exposure increases proapoptotic signaling in the lungs

* Significantly different from the saline control day-1

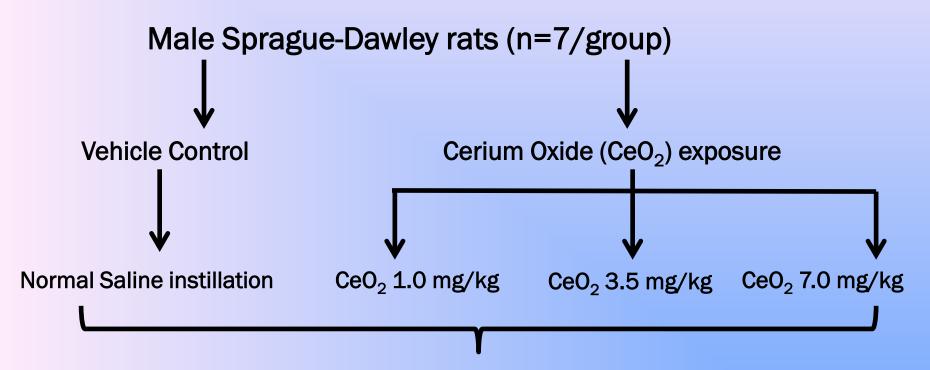



CeO₂ nanoparticle exposure increases caspase -3 cleavage





CeO₂ nanoparticle exposure increases serum inflammatory cytokines, p38 MAPK and STAT-3 phosphorylation but diminishes p-ERK1/2


To investigate if the intratracheal instillation of CeO_2 nanoparticles has any toxic effects on the liver, kidney, spleen and hearts of rats

This paper has been previously published

Nalabotu SK, Kolli MB, Triest WE, Ma JY, Manne ND, Katta A, Addagarla HS, Rice KM, Blough ER. Int J Nanomedicine. 2011; 6: 2327-35. Epub 2011 Oct 14

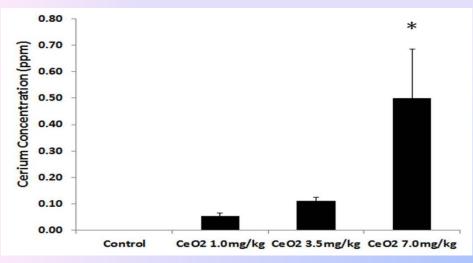
Study Design

Sacrifice animals at 28 days post exposure

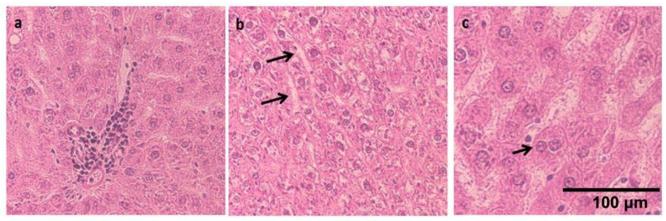
Examined liver and serum for biochemical changes

Alterations in absolute organ wet weight 28 days after intratracheal instillation of cerium oxide nanoparticles

Organ weight (g)	Saline Control (n=7)	CeO ₂ 1.0 mg/kg (n=7)	CeO ₂ 3.5 mg/kg (n=7)	CeO ₂ 7.0 mg/kg (n=7)
Heart (g)	1.52±0.15	1.35±0.05	1.27±0.07	1.23±0.05
Liver (g)	14.55±0.27	14.30±1.04	14.78±0.57	12.50±0.54*
Kidney (g)	2.67±0.31	2.55±0.21	2.54±0.33	2.43±0.31
Spleen (g)	0.58±0.06	0.65±0.10	0.56±0.08	0.64±0.04


Changes in serum biochemical parameters 28 days post intratracheal instillation of CeO₂ nanoparticles

Analyte	Saline Control (N=7)	CeO ₂ 1.0mg/kg (N=7)	CeO ₂ 3.5mg/kg (N=7)	CeO ₂ 7.0mg/kg (N=7)
Glucose	186.4±25.7	208±43.0	197.6±40.2	231±93.5
ALP	276.1±53.7	263±55.4	242±35.3	222.23±81.9
ALT	58.3±10.7	83.4±28.5	88.3±31.4	130.5±94.5*
Amylase	974.7±97.4	1055.1±124.2	991.4±116	908.4±277.0
Total Protein	6.0±0.1	5.9±0.6	6.2±0.5	5.4±1.3
Albumin	4.2±0.2	4.1±0.5	4.5±0.4	3.5±1.1*
Globulin	1.8±0.2	1.8±0.2	2.0±0.2	1.8±0.2
ALB-GLOB Ratio	2.3±0.3	2.3±0.3	2.2±0.3	1.9±0.6
BUN	15.4±1.1	15±3.1	15.7±1.9	14.4±4.2
Creatinine	0.3±0.1	0.27±0.1	0.23±0.1	0.28±0.1
Ca ²⁺	11.4±0.7	10.7±1.3	11.5±1.1	10.4±2.4
Phosphorus	8.6±0.9	7.9±1.2	8.7±1.0	8.2±1.9
Na ⁺	142.3±0.9	138±10.7	138.1±10.7	132.1±16.3
K+	5.5±0.4	6.0±0.5	6.5±0.6	5.8±0.9
Na ⁺ - K ⁺ Ratio	25.8±2.0	22.9±1.7*	21.2±1.4*	22.8±2.5*
Analyte	Saline Control (N=7)	CeO ₂ 1.0mg/kg (N=7)	CeO ₂ 3.5mg/kg (N=7)	CeO ₂ 7.0mg/kg (N=7)
Total Cholesterol	100.7±1.9	100±0	100±0	103 1+8.3
Triglycerides	143±53.	109.6±50.9	190.3±83.7	93.1±22.3*
HDL	21±6.0	19.4±5.4	20±6.4	19±5.1


Instillation is associated with alterations in ALT, albumin, Na/K ratio, and triglyceride levels

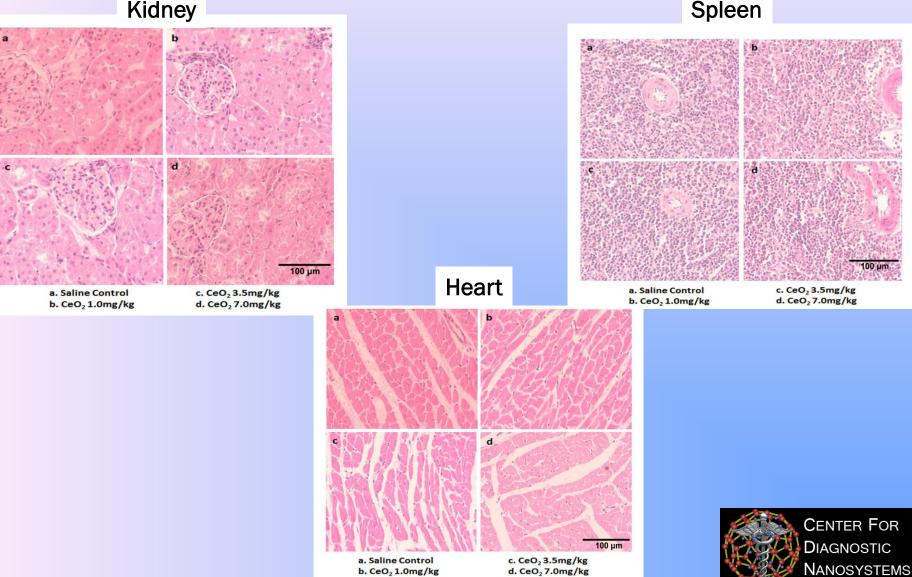
Instillation of CeO₂ nanoparticles, ceria deposition and liver histology

Liver cerium concentration

Focal Inflammation

Arrow: Sinusoidal dilatation

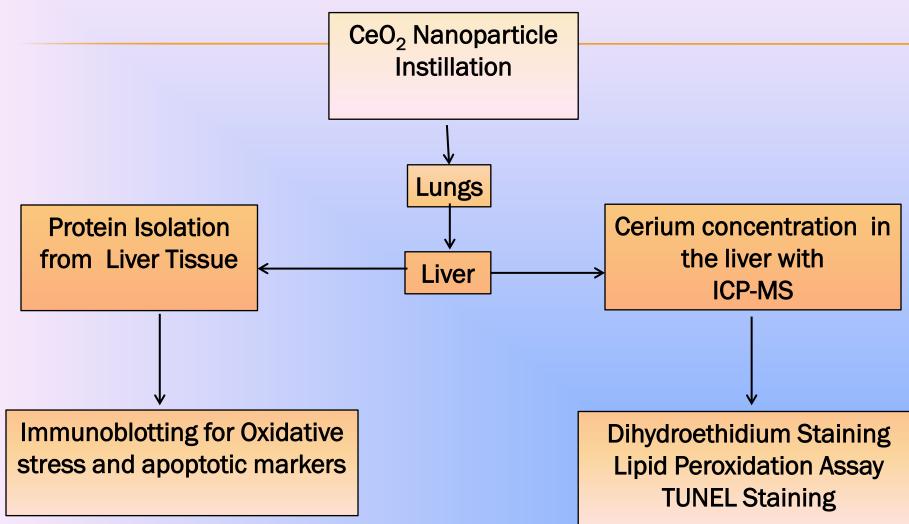
Arrow: Binucleation


CeO₂ nanoparticle exposure alters histopathological architecture of the liver

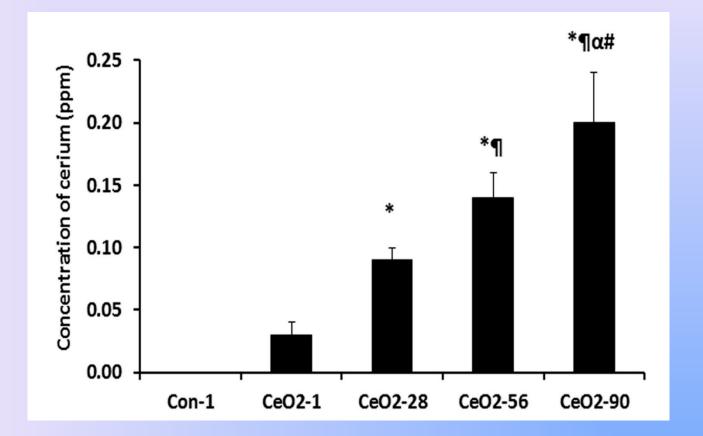
CENTER FOR DIAGNOSTIC NANOSYSTEMS

CeO₂ nanoparticle exposure has no effect on the histological appearance of the kidney, spleen, or heart

Aim III


To investigate the role of oxidative stress and apoptosis in the hepatic toxicity induced by CeO_2 nanoparticles following intratracheal instillation

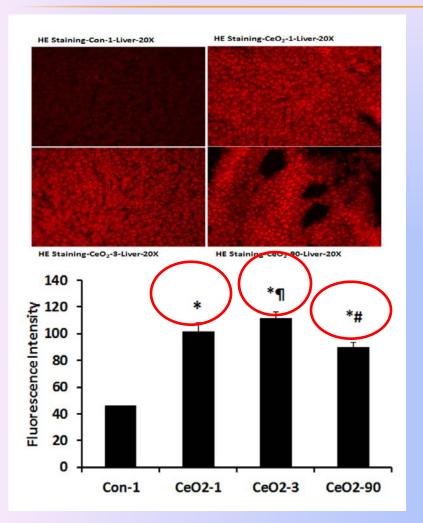
Study Design	Day	y O
	Normal Saline instillation	CeO_2 instillation
Sacrifice day 1	N=6	N=6
Sacrifice day 3	N=6	N=6
Sacrifice day 14	N=6	N=6
Sacrifice day 28	N=6	N=6
Sacrifice day 56	N=6	N=6
Sacrifice day 90	N=6	N=6

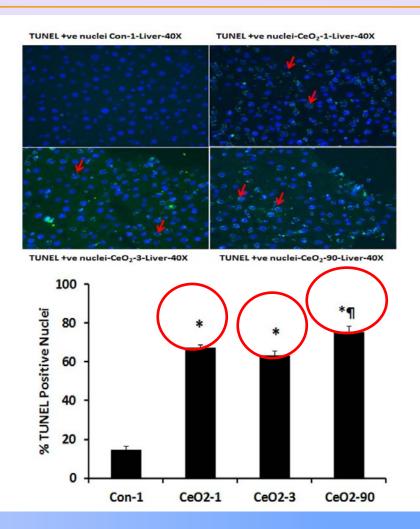


Methods


Cerium accumulation in the liver over time

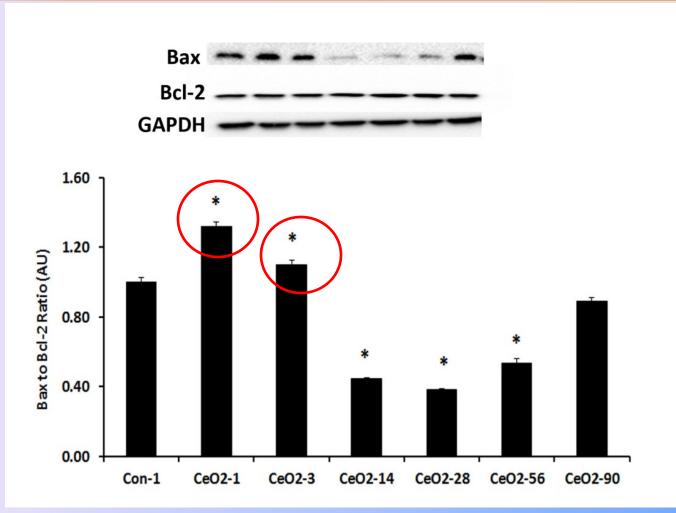
- * Significant difference from control-1
- ¶ Significant difference from Day-1 exposure
- α Significant difference from Day-28 exposure
- # Significant difference from Day-56 exposure


CeO₂ nanoparticle exposure is associated with lipid peroxidation of the hepatic cell membrane

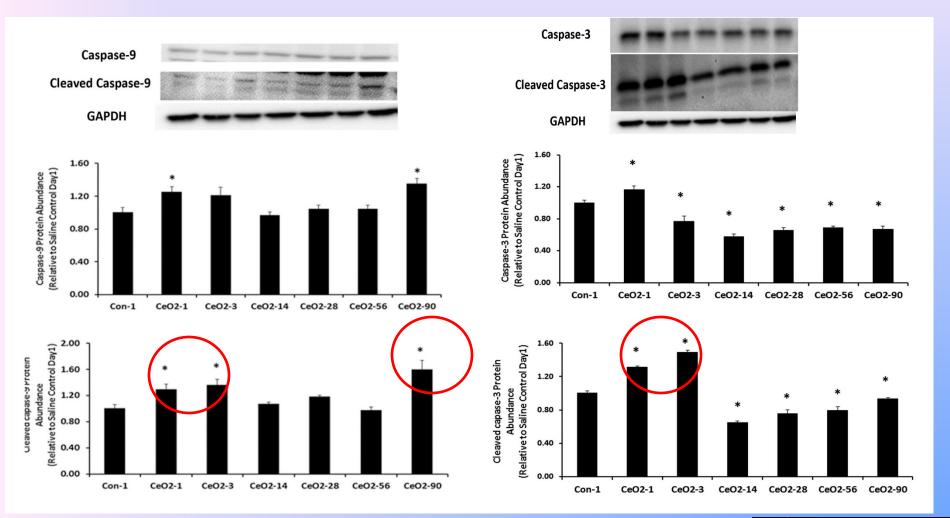


* Significant difference from the controls in each group ¶ Significant difference from the 14, 28 and 56 days CeO₂ exposure group

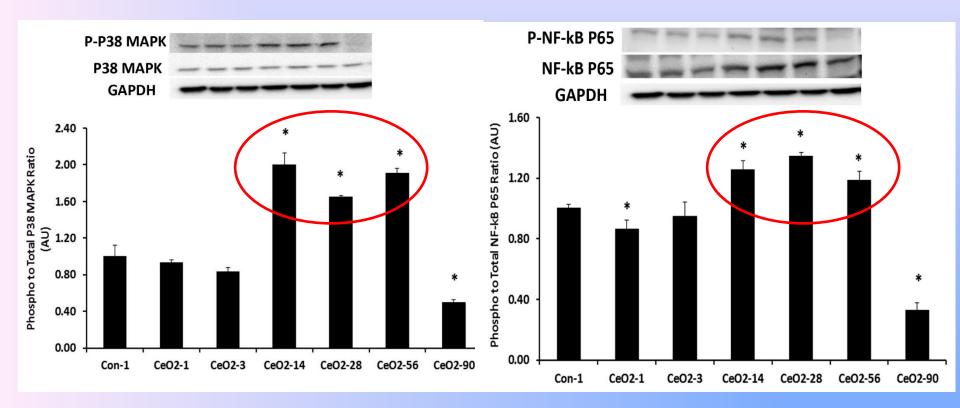
CeO₂ nanoparticle exposure is associated with increased superoxide and TUNEL positive nuclei



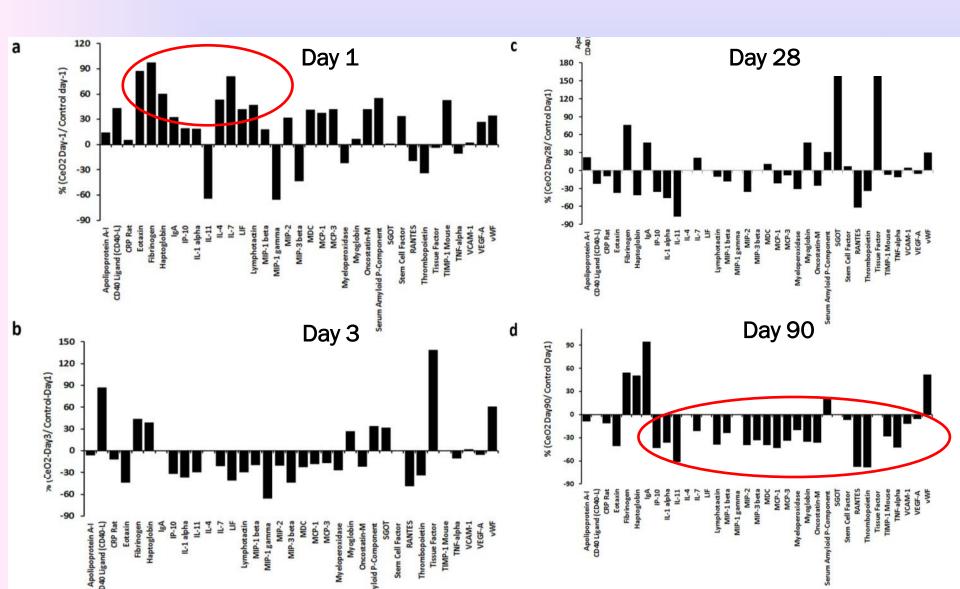
*Significant difference from control-1 ¶ Significant difference from Day-1 exposure # Significant difference from Day-3 exposure

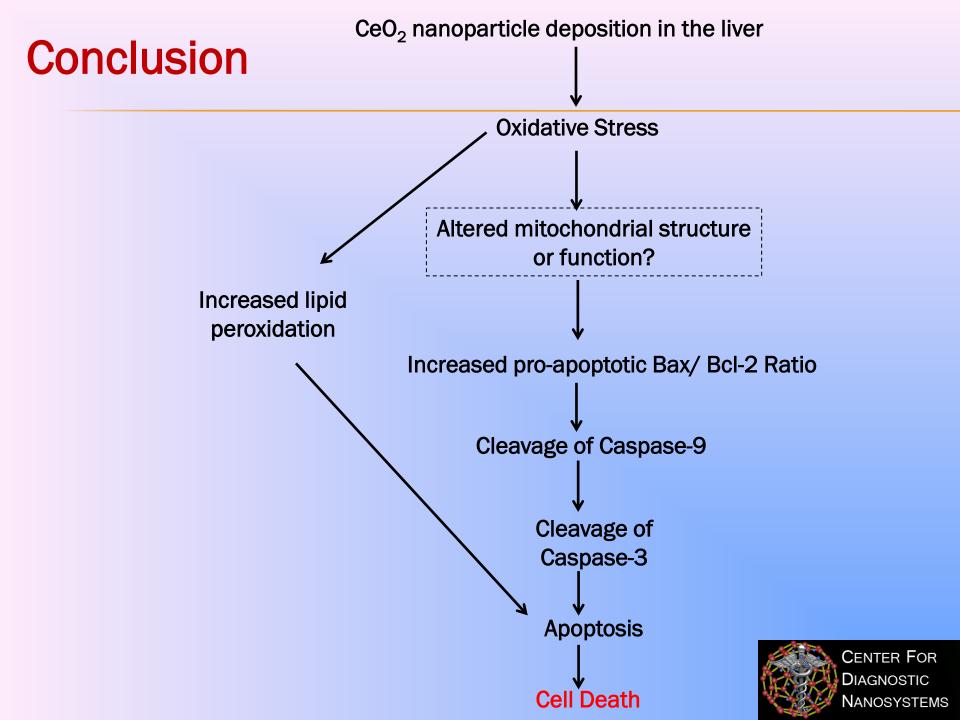

CeO₂ nanoparticle exposure is associated with increased Bax/Bcl-2 ratio

* Significant difference from control-1



CeO₂ nanoparticle exposure appears to activate caspase-3




CeO₂ nanoparticle exposure is associated with phosphorylation (activation) of p38 MAPK and Nf-k β p65

CeO₂ nanoparticle exposure affects serum biomarkers that may play a role in inflammation

Summary of Findings

Intratracheal instillation of CeO₂ nanoparticles is associated with oxidative stress and apoptosis in the lungs

 CeO_2 nanoparticles can translocate from the lungs to the liver where they appear to bioaccumulate over time.

 CeO_2 nanoparticle deposition in the liver is associated with histological alterations (hydropic degeneration, hepatocyte enlargement, sinusoidal dilatation and the accumulation of granular material inside the hepatocytes), increases in oxidative stress and apoptosis.

Acknowledgments

Leadersh	ip	Staff		
	Kevin M. Rice		ebecca Ferris	
	Miaozong Wu		nmanuel David Pittore	
	Mike Norton		inivasarao Thulluri, MS	
	Elizabeth Murray			
			atyanarayana Paturi, MS	
Affiliated	Faculty, Marshall University	Ra	avi Kumar Arvapalli, MS	
	Mrs. Charlotte Weber			
	Kevin Yingling, M.D.	Students		
	Paulette Wehner, M.D.		cqueline Fannin	
	Todd Gress, M.D.	Su	unil Karkarla, DVM	
	Abid Yaqub, M.D.	Ma	adukarbabu Kolli, DVM	
	Bin Wang, Ph.D.	Siv	va Nalabothu, DVM	
	C .	Su	udrsanan Kundla, DVM	
	Nancy Munn, M.D.	Ra	adhakrishna Para, DVM	
	Scott Day, Ph.D.	Pr	asannakumar Manne	
		St	even Rodgers	
Visiting S				
	Cuifen Wang, Ph.D.	Trainees		
			nar Akhtar, M.D.	
Postdoctoral Fellows			anda Al-Jayoussi, M.D.	
	Selveraj Vellasamy, Ph.D.		esreen Ben-Hamed, M.D.	
	Wensheng Li, Ph.D.			
			eem Kheetan, M.D.	
		Be	elay Sileshi, M.D.	

Grant Funding DOE, NSF, McNeil Pharmaceutical, Novartis Pharmaceutical, Astra Zeneca

Thank you for your attention.

