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Objectives 

• Assess the thermodynamic feasibility of patterning etch-

resistant materials (complex materials and structures) 

 

• Identify the non-PFC alternative for through silicon via etch  

 

• Validate the theoretical assessment by performing etching 

experiments of these materials by industrial sponsors  

 

• Identify the non-PFC alternative for transition metal etching  
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ESH Metrics and Impact 

1. Reduction in the use of PFC gases by focusing on non-

PFC chemistries  

 

2. Reduction in emission of PFC gases to environment  

 

3. Reduction in the use of chemicals by tailoring the 

chemistries to the specific materials to be removed  
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Input from IAB 
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• Focus on non-PFC materials 

 

• Theoretical calculations must be paired with experimental data collection for 

validation  

 

• Potential viability of NF3/O2 still needs to be validated – need an industry partners 

 

• Support the need for industry partners to provide a platform for experimental 

validation 

 

• Cost is a significant factor.  Can any conclusions be drawn regarding how much 

NF3 would have to be used relative to SF6? 

 

• Expand into new materials and carbon-doped oxide etch for greater impact  

 

• N2O is another area of interest (process fundamentals and abatement efficiency). 
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Magnetic Devices Materials 
Memory overview [RENASES] 

• MRAM can be the solution to the memory bottle neck 

• MRAM patterning is challenging due to the materials of choice 

and the high aspect ratio of cells  

Redeposition in high aspect ratio features 

[Reza Abdolvand, 2008] 

Sidewall  

Re-deposition 
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Aspect Ratio ~40 
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Potential Target Material in MRAM 

Material Chemistry Reference 

Ni CO/NH3 Matsui, 2002 

Fe Ar/O2 

CH3OH 

Cardoso, 2001 

Kinoshita, 2010 

Co Ar 

Ar 

Braganca, 2009 

Okamura, 2005 

MgO CH3OH/Ar Kim, 2012 

Ru CF4/O2 

Ar 

Yen, 2006 

Persson, 2011 

PtMn 

PtMn 

CH3OH 

Cl2 

Otani, 2007 

Kumagai, 2004 

Mn BCl3/Ar 

SF6/Ar 

Hong, 1999 

Hong, 1998 

• Problem of etch resistance compounded by need for selectivity in increasingly 

complex stacks 

• For a systematic approach, the work starts with simple metals (Fe, Co, Ni)  
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Systematic Approach - Thermodynamics 

 • Thermodynamic approach can be systematic 
 

- If such data is available  
- NIST-JANAF Thermo-chemical tables 

- HSC Chemistry for windows, chemical reaction and equilibrium software 

with extensive thermo-chemical database 

- FACT, Facility for Analysis of Chemical Thermodynamics  

- Barin and Knacke tables (thermo-chemical data for pure substances and 

inorganic substances)  

- Determination of dominant surface/gas-phase species 

- Assessment of possible reactions  

 

• Graphical Representation of thermodynamic analysis 
 

- Richardson Ellingham diagram 

- Pourbaix diagram 

- Volatility diagram  
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• Simulation program : DLPOLY 

• System for simulation :  

 ML2, ML3 (M=Co, Ni, Fe), L: organic ligand. (a system comprised of 125 

metal atoms) 

• ΔHvap could be calculated 

The Need for Thermodynamic Data 

DFT calculation         

MD calculation 

• Simulation program : Gaussian  

• Examples for DFT calculation 

• ΔHf and ΔHrxn could be calculated 

• However, Gaussian is not good for calculating a large system with many metal 

atoms, so MD calculation is needed for accuracy  

• If thermodynamic parameter is not available,  
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Availability of Thermodynamic Data 

 

Metal 298K 
ΔG° ΔfH° ΔS° 

MP(C) BP(C) 
kJ·mol-1 kJ·mol-1 J·K-1 mol-1 

Co-Clx 

CoCl(g) 161.853 192.882 245.679 unstable 

CoCl2(c) -269.647 -312.545 109.266 735 1049 

CoCl2(g) -107.244 -93.722 298.500 

CoCl3(g) -154.508 -163.594 334.209 

Co2Cl4(g) -333.955 -350.619 450.400 

Fe-Clx 

FeCl(g) 173.720 251.076 257.855 

FeCl2(c) 76.704 -341.158 118.534 677 

FeCl2(g) -230.238 -141.000 299.300 

FeCl3(g) -355.723 -253.100 344.200 

Fe2Cl4(g) -569.880 -431.400 484.399 

Ni-Clx 

NiCl(g) 106.896 182.000 251.900 

NiCl2(c) -334.446 -305.332 97.650 1031 

NiCl2(g) -161.754 -73.990 294.364 

Co-(CO)x 

Co(CO)3 280 

Co2(CO)8 51 

Co4(CO)12 60 

Fe-(CO)x 

Fe(CO)5 -20.5 103 

Fe2(CO)9 100 

Fe3(CO)12 140 

Ni-(CO)x Ni(CO)4 -19 42 

• Some thermodynamic data is available for MClx and M(CO)x 
[1],[2]. 

[1] HSC chemistry for windows, ver. 7 [2] NIST-JANAF Thermochemical Tables 

• For unavailable thermodynamic data, it needs to be calculated by DFT or MD. 
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Volatility Diagram for Co-Cl System 

  Equilibrium between condensed phases 

1 Co(c) + 1/2Cl2(g) ↔ CoCl(c) 

2 CoCl(c) + 1/2Cl2(g) ↔ CoCl2(c) 

  Equilibrium between Co(g) and condensed phases 

3 Co(c) ↔ Co(g) 

4 CoCl(c) ↔ Co(g) + 1/2Cl2(g) 

5 CoCl2(c) ↔ Co(g) + Cl2(g) 

  Equilibrium between CoCl(g) and condensed phases 

6 Co(c) +1/2Cl2(g) ↔ CoCl(g)  

7 CoCl( c) ↔ CoCl(g) 

8 CoCl2(c) ↔ CoCl(g) +1/2Cl2(g) 

  Equilibrium between CoCl2(g) and condensed phases 

9 Co(c)+ Cl2(g) ↔CoCl2(g) 

10 CoCl(c )+ 1/2Cl2(g) ↔ CoCl2 (g) 

11 CoCl2(c) ↔ CoCl2(g) 

Step 1. Proposed reaction list for Co-Cl system 

• The list of relevant reactions for constructing the volatility diagram for the 

Co-Cl system is given in the table. 
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G at 400K [1],[2] 

(kJ/mol) 

Cl2(g) -89.7 

H2(g) -52.7 

H(g) 171.7 

Co(g) 352.5 

Co(c) -12.4 

CoCl(c) -204.7 

CoCl(g) 93.4 

CoCl2(c) -357.4 

CoCl2(g) -213.8 

Co2Cl4(g) -532.6 

  Reaction 
ΔG 

(kJ/mol) 
Log K 

1   Co(c) + 1/2Cl2(g) → CoCl(c) -147.4 19.2 

2   CoCl(c) + 1/2Cl2(g) → CoCl2(c) -107.7 14.0 

3   Co(c) → Co(g) 364.9 -47.6 

4   CoCl(c) → Co(g) + 1/2Cl2(g) 512.4 -66.9 

5   CoCl2(c) → Co(g) + Cl2(g) 620.2 -80.9 

6   Co(c) +1/2Cl2(g) → CoCl(g)  150.7 -19.6 

7   CoCl( c) → CoCl(g) 298.2 -38.9 

8   CoCl2(c) → CoCl(g) +1/2Cl2(g) 406.0 -53.0 

9   Co(c)+ Cl2(g) →CoCl2(g) -111.6 14.5 

10   CoCl(c )+ 1/2Cl2(g) → CoCl2 (g) 35.7 -4.6 

11   CoCl2(c) → CoCl2(g) 143.5 -18.7 

• Thermodynamic parameters are referred to HSC[1] and JANAF[2] data base. 

• ΔG can be calculated from the Gibbs free energy of each molecule and the 

stoichiometry of a reaction.  Equilibrium constant can be obtained from ΔG. 

[1] HSC chemistry for windows, ver. 7 [2] NIST-JANAF Thermochemical Tables 

Volatility Diagram for Co-Cl System 
Step 2. Calculating equilibrium constant of the reactions 
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  Reaction 
ΔG 

(kJ/mol) 
log K 

1   Co(c) + 1/2Cl2(g) → CoCl(c) -147.4 19.2 

2   CoCl(c) + 1/2Cl2(g) → CoCl2(c) -107.7 14.0 

In reaction 1 

log K = log 
a(CoCl(c)) 

a(Co(c))P(Cl2(g))1/2 

log P(Cl2(g)) = - 2log K = -38.4  

assuming, a(CoCl(c))= a(Co(c)) = 1  

• Cl2 pressure at the equilibrium state can be calculated from the equilibrium 

constant. 

• As Cl2(g) partial pressure increases, chlorination is observed, but still CoCl2 

exist as condensed phase. 

Volatility Diagram for Co-Cl System 

Step 3. Equilibrium between condensed phases 
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  Reaction 
ΔG 

(kJ/mol) 
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1   Co(c) + 1/2Cl2(g) → CoCl(c) -147.4 19.2 

2   CoCl(c) + 1/2Cl2(g) → CoCl2(c) -107.7 14.0 

3   Co(c) → Co(g) 364.9 -47.6 

4   CoCl(c) → Co(g) + 1/2Cl2(g) 512.4 -66.9 

5   CoCl2(c) → Co(g) + Cl2(g) 620.2 -80.9 

Volatility Diagram for Co-Cl System 
Step 4. Equilibrium between Co(g) and condensed phases 
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Volatility Diagram for Co-Cl System 
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Effect of Temperature 
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• CoCl2 becomes volatile at 1050 K. 



SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing 

Effect of Molecular Oxygen 
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Reaction ΔG (kJ/mol) logK 

12 CoCl2(c)+ 1/2O2(g) → CoO(g)+Cl2(g) 502.6 -65.6 

13 CoCl2(c) + 2/3O2(g) → CoO(g)+2OCl(g) 697.3 -91.0 

• O2 addition does not improve the vapor pressure of etch product. 
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Effect of Atomic Oxygen 

Reaction ΔG (kJ/mol) logK 

14 CoCl2(c)+ O(g) → CoO(g)+Cl2(g) 277.0 -36.2 

15 CoCl2(c) + 3O(g) → CoO(g)+2OCl(g) 20.0 -2.6 

• O radical addition showed the vapor pressure enhancement.  
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Reaction ΔG(Kj/mol) logK 

14 CoCl2(c) + H(g) → CoH(g)+Cl2(g) 455.6 -59.6 

15 CoCl2(c) + 3H(g) → CoH(g)+2HCl(g) -133.2 17.4 

Effect of Atomic Hydrogen 
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• Atomic hydrogen addition can produce the volatile etch product. 
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Volatility Diagram: Metal-(CO) Complex 

• Volatility of  M-(CO)x complexes: Ni(CO)5>Fe(CO)5>Co(CO)4 

   Reation_∆G(kJ/mol) Fe Co Ni 

1 M(c) + xCO(g) → M (CO)x(g)  -3.4 13.6 -38.7 

2 M(c) + xCO2(g) → M (CO)x(g) + yO2 (g) 1282.7 1042.5 990.2 

Fe, Ni: x=5, y=2.5; Co: x=4, y=2 

 

S.J. Pearton, Mat. Res. Soc. Symp. Proc. 2000  
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• The mass spectrometry of CO/NH3 has been studied, the main species 

generated in the plasma are listed in the table. [1] 

• It’s difficult to confirm the formation of metal complexes such as the low flux 

of products off of the metal surface and cracking during the ionization.  

CO/NH3 Plasma Species[1] 

m/z species 

45 HCONH2 (Formamide) 

52 (NH3)3H
+ 

62 (HCONH2)(NH3)H
+ 

69 (NH3)4H
+ 

80 (HCONH2)(NH3)2H
+ 

Table 1. The main products in 

CO/NH3 Plasma Mass spec. 

[1] A. Orland, J. Vac. Sci. Technol. B 23, 2005 
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• System for simulation :  

 ML2, ML3 (M=Co, Ni, Fe), L: organic ligand. (a system comprised of 125 metal atoms) 

• Simulation program : DLPOLY 

• ΔHvap could be calculated 

The need for Thermodynamic Data 

DFT calculation         

MD calculation 

• Simulation program : Gaussian  

• Examples for DFT calculation 

 

 

 

• ΔHf and ΔHrxn could be calculated 

• However, Gaussian is not good for calculating a large system with many metal atoms(>5), 

so MD calculation will be tested to get an accurate value 

• If the thermodynamic data is not available, (ex. MCH3NO)  

+ 

 

Metal 

Ligand 
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∆fH of M-CH3NO Complexes 
Method: DFT(B3LYP) 

Basis set:6-311G+ 

 

•Although the Fe, Co, Ni-formamide complexes are not available in the literature, 

the structure of Ca-formamide complex has been simulated by Gaussian  

•Volatility of complexes: Fe-CH3NO ~ Ni-CH3NO > Co-CH3NO 

T=298.15K 

P=1atm 
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Volatility Diagram: M-CH3NO Complex 

• Volatility of complexes: Fe-CH3NO>Ni-CH3NO>Co-CH3NO 

NIST-JANAF Thermo-chemical tables, 2012 
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   Reation_∆G(kJ/mol) Fe Co Ni 

1  M(c) → M(g) 369.8 382.1 384.7 

2 CH3NO(g) +M(g)→  -268.4 -23.7 -283.3 

4 CH3NO(g) +M(g)→ x 56.3 x 

5 CH3NO(g) +M(g)→ x 40.4 -272.5 

6 CH3NO(g) +M(g)→ x 40.9 -280.6 
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NIST-JANAF Thermo-chemical tables, 2012 

Organometallic Chemistry 

2,2,6,6-tetra-methyl- 

3,5-heptanedionate (TMHD) 

• “Reverse engineering” of ALD points to organometallic 

chemistry as a viable alternative to halogens  

Product MP BP 

CoCl2 737 1049 

CoCO3 

Co2(CO)8 

Co4(CO)12 

Co(acac)2 

Co(acac)3 

Co(tmhd)2 

Co(tmhd)3 

280* 

51* 

60* 

170 

211 

254 

143 

 

 

 

181 (exp~200) 

170 (exp~190) 

171 (exp~192) 

161 (exp~179) 

FeCl3 308 ~316 

Fe(C5H5)2 

Fe(CO)4H2 

Fe(CO)5 

Fe2(CO)9 

Fe3(CO)12 

Fe(acac)3 

Fe(tmhd)3 

172.5 

-70 

-20.5 

100* 

140 

184 

164 

249 

-20* 

103 

 

 

161 (exp~182) 

150 (exp~177) 

NiCl2 1031 985 (subl) 

Ni(CO)4 -19 42 (exp~60) 

Atomic 

Layer 

Etching 

Acetylacetonate 

(ACAC) 
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[1] Cu etch with hfac vapor at 200 C  

Surface morphology change 

Organometallic Chemistry 

 [1] S.W. Kang et al. JVST B. 17 (1999) 154 
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MOx 

acac 

M(acac)2 

M : Fe[1], Ni[2], Cu[3] 

M(acac)n vaporization induced by acac exposure  

• It is reported that acac (acetylacetone) or hfac (hexafluoro acetylacetone) can 

etch Fe, Ni, and Cu films. 

• For copper, hfac caused the morphology change and a reasonable etch rate. 
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Organometallic Chemistry to Etch Ni 

 [2] R. I. Masel et al. JVST A. 16 (1998) 3259 

[2] Ni(acac)2, Ni(tfac)2, and Ni(hfac)2  
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• Mass spectroscopy data showed that acac, tfac, and hfac dose generate 

Ni(acac)2, Ni(tfac)2, and Ni(hfac)2, respectively. 

Hfac (hexafluoro acetylacetone) 

Acac (acetylacetone) 

Tfac (trifluoro acetylacetone) 

• Thermal desorption spectroscopy  

 using mass spectrometer 
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Ion Beam Assisted Chemical Etching 
 

1. Pre-Etch Surface 2. Ion Beam Exposure, 

Creation of Reactive Sites 

3. Organic Ligands Exposure, 

Formation of Metal Complex 
4. Post-Etch Surface 

• Ion beam generate active sites  

• Organic molecules react with active sites and generate volatile etch products. 



SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing 

• The volatility diagram is a useful tool to calculate the vapor pressure of the 

etch product. 

• CoCl2, NiCl2, and FeCl2 are not volatile enough and needs secondary 

etchant to enhance the vapor pressure of etch product. 

• Hydrogen radical addition improve the vapor pressure of the etch product. 

• Some of the complex products are stable which implies the potential etch 

product in CO/NH3 plasma treatment. 

• Acac, tfac, and hfac are used to chemically etch for metal films.  

• Ion beam assisted chemical vapor etch can generate the active site to make 

a metal atom react with  organic ligand. 
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Summary 
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Future Plans 

Next Year Plans 

 
• Perform thermodynamic calculations to assess potential impact 

and projected effectiveness 

• Implement target chemistries and carry out plasma etching 

assessment  
 

Long-Term Plans 

 
• Formulate the models to predict etch product from plasma 

processes 

• Propose the plasma chemistries via thermodynamic calculation 
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Publications, Presentations, and 

Recognitions/Awards 

Presentation: 

• Presentation in Gordon Research Conference(GRC), July 2012 

• Invited talk to AVS International Symposium, October 2012 

 

Publication: 

• Deliverable Report, P065582,  “Non-PFC Plasma Chemistries for 

Patterning Complex Materials and Structures”, January 2013 
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Industrial Interactions and  

Technology Transfer 

• Conference call with Intel, September 2012 (Satyarth Suri, Bob Turkot) 

• Conference call with Intel, 30, November, 2012 (Satyarth Suri)  

• Conference call with Intel, 10, January, 2013 (Satyarth Suri)  

• Conference call with Intel, 21, February, 2013 (Satyarth Suri)  

• Visit Intel, Portland, OR, 3, April, 2013, (Bob Turkot, Satyarth Suri) 

• Conference call with SRC, 24, April, 2013 (Bob Haveman) 
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