# **Non-PFC Plasma Chemistries for**

### **Patterning Complex Materials/Structures**

(Task Number: 425.038)

PIs:

• Jane P. Chang, Chemical and Biomolecular Engineering, UCLA

**Graduate Students:** 

• Jack Chen, PhD student, Chemical and Biomolecular Engineering, UCLA

**Other Researchers:** 

• Taeseung Kim, postdoc, Chemical and Biomolecular Engineering, UCLA



- Assess the thermodynamic feasibility of patterning etchresistant materials (complex materials and structures)
- Identify the non-PFC alternative for through silicon via etch
- Validate the theoretical assessment by performing etching experiments of these materials by industrial sponsors
- Identify the non-PFC alternative for transition metal etching

### **ESH Metrics and Impact**

- 1. Reduction in the use of PFC gases by focusing on non-PFC chemistries
- 2. Reduction in emission of PFC gases to environment
- **3. Reduction in the use of chemicals by tailoring the chemistries to the specific materials to be removed**



- Focus on non-PFC materials
- Theoretical calculations must be paired with experimental data collection for validation
- Potential viability of NF3/O2 still needs to be validated need an industry partners
- Support the need for industry partners to provide a platform for experimental validation
- Cost is a significant factor. Can any conclusions be drawn regarding how much NF<sub>3</sub> would have to be used relative to SF<sub>6</sub>?
- Expand into new materials and carbon-doped oxide etch for greater impact
- $N_2O$  is another area of interest (process fundamentals and abatement efficiency).

# **Magnetic Devices Materials**



#### Memory overview [RENASES]

Redeposition in high aspect ratio features [Reza Abdolvand, 2008]



- MRAM can be the solution to the memory bottle neck
- MRAM patterning is challenging due to the materials of choice and the high aspect ratio of cells

# **Potential Target Material in MRAM**



- Problem of etch resistance compounded by need for selectivity in increasingly complex stacks
- For a systematic approach, the work starts with simple metals (Fe, Co, Ni)

# **Systematic Approach - Thermodynamics**

• Thermodynamic approach can be systematic

### - If such data is available

- NIST-JANAF Thermo-chemical tables
- HSC Chemistry for windows, chemical reaction and equilibrium software with extensive thermo-chemical database
- FACT, Facility for Analysis of Chemical Thermodynamics
- Barin and Knacke tables (thermo-chemical data for pure substances and inorganic substances)
- Determination of dominant surface/gas-phase species
- Assessment of possible reactions
- Graphical Representation of thermodynamic analysis
  - Richardson Ellingham diagram
  - Pourbaix diagram
  - Volatility diagram

# **The Need for Thermodynamic Data**

#### • If thermodynamic parameter is not available,

#### **DFT calculation**

- Simulation program : Gaussian
- Examples for DFT calculation
- $\Delta H_{f}$  and  $\Delta H_{rxn}$  could be calculated
- However, Gaussian is not good for calculating a large system with many metal atoms, so MD calculation is needed for accuracy

#### **MD** calculation

- Simulation program : DLPOLY
- System for simulation : ML<sub>2</sub>, ML<sub>3</sub> (M=Co, Ni, Fe), L: organic ligand. (a system comprised of 125 metal atoms)
- $\Delta H_{vap}$  could be calculated

## **Availability of Thermodynamic Data**

#### • Some thermodynamic data is available for MCl<sub>x</sub> and M(CO)<sub>x</sub> <sup>[1],[2]</sup>.

| Matal                                   | 20.91/          | $\Delta G^{\circ}$                                     | $\Delta_{ m f} { m H}^{\circ}$                         | $\Delta S^{\circ}$                  |       |          |
|-----------------------------------------|-----------------|--------------------------------------------------------|--------------------------------------------------------|-------------------------------------|-------|----------|
| ivietai                                 | 298K            | kJ·mol⁻¹                                               | kJ·mol <sup>-1</sup>                                   | J·K <sup>-1</sup> mol <sup>-1</sup> | MP(C) | BP(C)    |
|                                         | CoCl(g)         | 161.853                                                | 192.882                                                | 245.679                             |       | unstable |
|                                         | $CoCl_2(c)$     | -269.647                                               | -312.545                                               | 109.266                             | 735   | 1049     |
| $Co-Cl_{r}$                             | $CoCl_2(g)$     | -107.244                                               | -93.722                                                | 298.500                             |       |          |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | $CoCl_3(g)$     | -154.508                                               | -163.594                                               | 334.209                             |       |          |
|                                         | Co2Cl4(g)       | -333.955                                               | -350.619                                               | 450.400                             |       |          |
|                                         | FeCl(g)         | 173.720                                                | 251.076                                                | 257.855                             |       |          |
|                                         | FeCl2(c)        | 76.704                                                 | -341.158                                               | 118.534                             | 677   |          |
| $Fe-Cl_r$                               | FeCl2(g)        | -230.238                                               | -141.000                                               | 299.300                             |       |          |
| $Fe-Cl_x$                               | FeCl3(g)        | -355.723                                               | -253.100                                               | 344.200                             |       |          |
|                                         | Fe2Cl4(g)       | -569.880                                               | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | 484.399                             |       |          |
|                                         | NiCl(g)         | 106.896                                                | 182.000                                                | 251.900                             |       |          |
| Ni-Clx                                  | NiCl2(c)        | -334.446                                               | -305.332                                               | 97.650                              | 1031  |          |
|                                         | NiCl2(g)        | -161.754                                               | -73.990                                                | 294.364                             |       |          |
|                                         | $Co(CO)_3$      |                                                        |                                                        |                                     | 280   |          |
| Co-(CO)x                                | $Co_2(CO)_8$    |                                                        |                                                        |                                     | 51    |          |
|                                         | $Co_4(CO)_{12}$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |                                                        | 60                                  |       |          |
|                                         | $Fe(CO)_5$      |                                                        |                                                        |                                     | -20.5 | 103      |
| Fe-(CO)x                                | $Fe_2(CO)_q$    |                                                        |                                                        |                                     | 100   |          |
|                                         | $Fe_3(CO)_{12}$ |                                                        |                                                        |                                     | 140   |          |
| Ni-(CO)x                                | $Ni(CO)_4$      |                                                        |                                                        |                                     | -19   | 42       |

#### • For unavailable thermodynamic data, it needs to be calculated by DFT or MD.

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

[1] HSC chemistry for windows, ver. 7 [2] NIST-JANAF Thermochemical Tables

#### **Step 1. Proposed reaction list for Co-Cl system**

| Equ                                                  | ilibrium between condensed phases                                                             |  |  |  |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|
| 1                                                    | $Co(c) + 1/2Cl_2(g) \leftrightarrow CoCl(c)$                                                  |  |  |  |
| 2                                                    | $CoCl(c) + 1/2Cl2(g) \leftrightarrow CoCl_2(c)$                                               |  |  |  |
| Equ                                                  | ilibrium between Co(g) and condensed phases                                                   |  |  |  |
| 3                                                    | $Co(c) \leftrightarrow Co(g)$                                                                 |  |  |  |
| 4                                                    | $CoCl(c) \leftrightarrow Co(g) + 1/2Cl_2(g)$                                                  |  |  |  |
| 5                                                    | $\operatorname{CoCl}_2(c) \leftrightarrow \operatorname{Co}(g) + \operatorname{Cl}_2(g)$      |  |  |  |
| Equ                                                  | ilibrium between CoCl(g) and condensed phases                                                 |  |  |  |
| 6                                                    | $Co(c) + 1/2Cl_2(g) \leftrightarrow CoCl(g)$                                                  |  |  |  |
| 7                                                    | $CoCl(c) \leftrightarrow CoCl(g)$                                                             |  |  |  |
| 8                                                    | $\text{CoCl}_2(c) \leftrightarrow \text{CoCl}(g) + 1/2\text{Cl}_2(g)$                         |  |  |  |
| Equilibrium between $CoCl_2(g)$ and condensed phases |                                                                                               |  |  |  |
| 9                                                    | $Co(c)+Cl_2(g) \leftrightarrow CoCl_2(g)$                                                     |  |  |  |
| 10                                                   | $\operatorname{CoCl}(c) + 1/2\operatorname{Cl}_2(g) \leftrightarrow \operatorname{CoCl}_2(g)$ |  |  |  |
| 11                                                   | $\text{CoCl}_2(c) \leftrightarrow \text{CoCl}_2(g)$                                           |  |  |  |

• The list of relevant reactions for constructing the volatility diagram for the Co-Cl system is given in the table.

### **Step 2. Calculating equilibrium constant of the reactions**

|                       | G at 400K <sup>[1],[2]</sup> |    |                                                                                           |                |       |
|-----------------------|------------------------------|----|-------------------------------------------------------------------------------------------|----------------|-------|
| Cl <sub>2</sub> (g)   | (kJ/mol)<br>-89.7            |    | Reaction                                                                                  | ΔG<br>(kJ/mol) | Log K |
| $H_2(g)$              | -52.7                        | 1  | $Co(c) + 1/2Cl_2(g) \rightarrow CoCl(c)$                                                  | -147.4         | 19.2  |
|                       | 171.7                        | 2  | $CoCl(c) + 1/2Cl_2(g) \rightarrow CoCl_2(c)$                                              | -107.7         | 14.0  |
| H(g)                  | 1/1./                        | 3  | $Co(c) \rightarrow Co(g)$                                                                 | 364.9          | -47.6 |
| Co(g)                 | 352.5                        | 4  | $CoCl(c) \rightarrow Co(g) + 1/2Cl_2(g)$                                                  | 512.4          | -66.9 |
| $C_0(c)$              | -12.4                        | 5  | $\operatorname{CoCl}_2(c) \rightarrow \operatorname{Co}(g) + \operatorname{Cl}_2(g)$      | 620.2          | -80.9 |
|                       | -12.7                        | 6  | $Co(c) + 1/2Cl_2(g) \rightarrow CoCl(g)$                                                  | 150.7          | -19.6 |
| CoCl(c)               | -204.7                       | 7  | $CoCl(c) \rightarrow CoCl(g)$                                                             | 298.2          | -38.9 |
| CoCl(g)               | 93.4                         | 8  | $\operatorname{CoCl}_2(c) \rightarrow \operatorname{CoCl}(g) + 1/2\operatorname{Cl}_2(g)$ | 406.0          | -53.0 |
| $C_0C_1(c)$           | -357 /                       | 9  | $Co(c)+Cl_2(g) \rightarrow CoCl_2(g)$                                                     | -111.6         | 14.5  |
|                       | -337.4                       | 10 | $CoCl(c) + 1/2Cl_2(g) \rightarrow CoCl_2(g)$                                              | 35.7           | -4.6  |
| CoCl <sub>2</sub> (g) | -213.8                       | 11 | $\operatorname{CoCl}_2(c) \rightarrow \operatorname{CoCl}_2(g)$                           | 143.5          | -18.7 |
| $Co_2Cl_4(g)$         | -532.6                       |    |                                                                                           |                |       |

- Thermodynamic parameters are referred to HSC<sup>[1]</sup> and JANAF<sup>[2]</sup> data base.
- $\Delta G$  can be calculated from the Gibbs free energy of each molecule and the stoichiometry of a reaction. Equilibrium constant can be obtained from  $\Delta G$ .

[1] HSC chemistry for windows, ver. 7 [2] NIST-JANAF Thermochemical Tables

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

### **Step 3. Equilibrium between condensed phases**



- Cl<sub>2</sub> pressure at the equilibrium state can be calculated from the equilibrium constant.
- As Cl<sub>2</sub>(g) partial pressure increases, chlorination is observed, but still CoCl<sub>2</sub> exist as condensed phase.

#### **Step 4. Equilibrium between Co(g) and condensed phases**



|   | Reaction                                                                             | ΔG<br>(kJ/mol) | Log K |
|---|--------------------------------------------------------------------------------------|----------------|-------|
| 1 | $Co(c) + 1/2Cl_2(g) \rightarrow CoCl(c)$                                             | -147.4         | 19.2  |
| 2 | $CoCl(c) + 1/2Cl_2(g) \rightarrow CoCl_2(c)$                                         | -107.7         | 14.0  |
| 3 | $Co(c) \rightarrow Co(g)$                                                            | 364.9          | -47.6 |
| 4 | $CoCl(c) \rightarrow Co(g) + 1/2Cl_2(g)$                                             | 512.4          | -66.9 |
| 5 | $\operatorname{CoCl}_2(c) \rightarrow \operatorname{Co}(g) + \operatorname{Cl}_2(g)$ | 620.2          | -80.9 |



### **Effect of Temperature**



• CoCl<sub>2</sub> becomes volatile at 1050 K.

### **Effect of Molecular Oxygen**



|    | Reaction                                                                              | $\Delta G (kJ/mol)$ | logK  |
|----|---------------------------------------------------------------------------------------|---------------------|-------|
| 12 | $\text{CoCl}_2(c)$ + 1/2 $\text{O}_2(g) \rightarrow \text{CoO}(g)$ + $\text{Cl}_2(g)$ | 502.6               | -65.6 |
| 13 | $CoCl_2(c) + 2/3O_2(g) \rightarrow CoO(g) + 2OCl(g)$                                  | 697.3               | -91.0 |

• O<sub>2</sub> addition does not improve the vapor pressure of etch product.

## **Effect of Atomic Oxygen**



|    | Reaction                                                                                                    | ΔG (kJ/mol) | logK  |
|----|-------------------------------------------------------------------------------------------------------------|-------------|-------|
| 14 | $\operatorname{CoCl}_2(c) + \operatorname{O}(g) \rightarrow \operatorname{CoO}(g) + \operatorname{Cl}_2(g)$ | 277.0       | -36.2 |
| 15 | $\text{CoCl}_2(c) + 3\text{O}(g) \rightarrow \text{CoO}(g) + 2\text{OCl}(g)$                                | 20.0        | -2.6  |

#### • O radical addition showed the vapor pressure enhancement.

## **Effect of Atomic Hydrogen**



|    | Reaction                                                                                     | $\Delta G(Kj/mol)$ | logK  |
|----|----------------------------------------------------------------------------------------------|--------------------|-------|
| 14 | $\operatorname{CoCl}_2(c) + H(g) \rightarrow \operatorname{CoH}(g) + \operatorname{Cl}_2(g)$ | 455.6              | -59.6 |
| 15 | $\text{CoCl}_2(c) + 3\text{H}(g) \rightarrow \text{CoH}(g) + 2\text{HCl}(g)$                 | -133.2             | 17.4  |

#### • Atomic hydrogen addition can produce the volatile etch product.

## **Volatility Diagram: Metal-(CO) Complex**



|   | Reation $\Delta G(kJ/mol)$                                           | Fe     | Co     | Ni    |
|---|----------------------------------------------------------------------|--------|--------|-------|
| 1 | $\mathbf{M}(c) + xCO(g) \rightarrow \mathbf{M}(CO)_{x}(g)$           | -3.4   | 13.6   | -38.7 |
| 2 | $\mathbf{M}(c) + xCO_2(g) \rightarrow \mathbf{M}(CO)_x(g) + yO_2(g)$ | 1282.7 | 1042.5 | 990.2 |
|   | Fe, Ni: x=5, y=2.5; Co: x=4, y=2                                     |        |        |       |
|   |                                                                      |        |        |       |

• Volatility of M-(CO)<sub>x</sub> complexes: Ni(CO)<sub>5</sub>>Fe(CO)<sub>5</sub>>Co(CO)<sub>4</sub>

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

S.J. Pearton, Mat. Res. Soc. Symp. Proc. 2000

# **CO/NH<sub>3</sub> Plasma Species**<sup>[1]</sup>

30% CO Plasma 26% CO Plasma

20% CO Plasma

Table 1. The main products in  $CO/NH_3$  Plasma Mass spec.



- The mass spectrometry of CO/NH<sub>3</sub> has been studied, the main species generated in the plasma are listed in the table. <sup>[1]</sup>
- It's difficult to confirm the formation of metal complexes such as the low flux of products off of the metal surface and cracking during the ionization.

# **The need for Thermodynamic Data**

• If the thermodynamic data is not available, (ex. MCH<sub>3</sub>NO)

#### **DFT calculation**

- Simulation program : Gaussian
- Examples for DFT calculation



- $\Delta H_{f}$  and  $\Delta H_{rxn}$  could be calculated
- However, Gaussian is not good for calculating a large system with many metal atoms(>5), so MD calculation will be tested to get an accurate value

#### **MD** calculation

- System for simulation : ML<sub>2</sub>, ML<sub>3</sub> (M=Co, Ni, Fe), L: organic ligand. (a system comprised of 125 metal atoms)
- Simulation program : DLPOLY
- $\Delta H_{vap}$  could be calculated

# $\underline{\Delta_{\mathbf{f}}\mathbf{H} \text{ of } \mathbf{M}\text{-}\mathbf{CH}_{3}\mathbf{NO} \text{ Complexes}}$

Method: DFT(B3LYP) T=298.15K Basis set:6-311G+ P=1atm

| $\Delta_{\rm f} {\rm H}({\rm kJ/mol})$ | [MCH <sub>3</sub> NO] | [MCH <sub>3</sub> NO] | [MCH <sub>3</sub> NO] | [MCH <sub>3</sub> NO] |
|----------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Fe                                     | -76.2                 | х                     | Х                     | х                     |
| Со                                     | х                     | 240.4                 | 240.8                 | 228.7                 |
| Ni                                     | -76.8                 | х                     | -71.4                 | -77.9                 |
| x=unstable product                     |                       |                       |                       |                       |
|                                        |                       |                       |                       |                       |

Although the Fe, Co, Ni-formamide complexes are not available in the literature, the structure of Ca-formamide complex has been simulated by Gaussian
Volatility of complexes: Fe-CH<sub>3</sub>NO ~ Ni-CH<sub>3</sub>NO > Co-CH<sub>3</sub>NO



• Volatility of complexes: Fe-CH<sub>3</sub>NO>Ni-CH<sub>3</sub>NO>Co-CH<sub>3</sub>NO

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

NIST-JANAF Thermo-chemical tables, 2012

## **Organometallic Chemistry**

|                 |                                                                                                  | Product                                                                                                                                                                                                       | MP                                                                      | BP                                                               |
|-----------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------|
| •               | 68                                                                                               | CoCl <sub>2</sub>                                                                                                                                                                                             | 737                                                                     | 1049                                                             |
|                 | Atomic<br>Layer<br>Etching                                                                       | $\begin{array}{c} \textbf{CoCO}_3 \\ \textbf{Co}_2(\textbf{CO})_8 \\ \textbf{Co}_4(\textbf{CO})_{12} \\ \textbf{Co}(acac)_2 \\ \textbf{Co}(acac)_3 \\ \textbf{Co}(tmhd)_2 \\ \textbf{Co}(tmhd)_3 \end{array}$ | <b>280*</b><br><b>51*</b><br><b>60*</b><br>170<br>211<br>254<br>143     | 181 (exp~200)<br>170 (exp~190)<br>171 (exp~192)<br>161 (exp~179) |
|                 |                                                                                                  | FeCl <sub>3</sub>                                                                                                                                                                                             | 308                                                                     | ~316                                                             |
|                 | M<br>O<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | $Fe(C_5H_5)_2$ $Fe(CO)_4H_2$ $Fe(CO)_5$ $Fe_2(CO)_9$ $Fe_3(CO)_{12}$ $Fe(acac)_3$ $Fe(tmhd)_3$                                                                                                                | 172.5<br>-70<br><b>-20.5</b><br><b>100*</b><br><b>140</b><br>184<br>164 | 249<br>-20*<br><b>103</b><br>161 (exp~182)<br>150 (exp~177)      |
| Acetylacetonate | 2,2,6,6-tetra-methyl-                                                                            | NiCl <sub>2</sub>                                                                                                                                                                                             | 1031                                                                    | 985 (subl)                                                       |
| (ACAC)          | 3,5-heptanedionate (TMHD)                                                                        | Ni(CO) <sub>4</sub>                                                                                                                                                                                           | -19                                                                     | 42 (exp~60)                                                      |

• "Reverse engineering" of ALD points to organometallic chemistry as a viable alternative to halogens

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

NIST-JANAF Thermo-chemical tables, 2012

# **Organometallic Chemistry**



- It is reported that acac (acetylacetone) or hfac (hexafluoro acetylacetone) can etch Fe, Ni, and Cu films.
- For copper, hfac caused the morphology change and a reasonable etch rate.

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

[1] S.W. Kang et al. JVST B. 17 (1999) 154

# **Organometallic Chemistry to Etch Ni**



• Mass spectroscopy data showed that acac, tfac, and hfac dose generate Ni(acac)<sub>2</sub>, Ni(tfac)<sub>2</sub>, and Ni(hfac)<sub>2</sub>, respectively.

## **Ion Beam Assisted Chemical Etching**





1. Pre-Etch Surface



2. Ion Beam Exposure, Creation of Reactive Sites



- Ion beam generate active sites
- Organic molecules react with active sites and generate volatile etch products.

# **Summary**

- The volatility diagram is a useful tool to calculate the vapor pressure of the etch product.
- CoCl<sub>2</sub>, NiCl<sub>2</sub>, and FeCl<sub>2</sub> are not volatile enough and needs secondary etchant to enhance the vapor pressure of etch product.
- Hydrogen radical addition improve the vapor pressure of the etch product.
- Some of the complex products are stable which implies the potential etch product in CO/NH<sub>3</sub> plasma treatment.
- Acac, tfac, and hfac are used to chemically etch for metal films.
- Ion beam assisted chemical vapor etch can generate the active site to make a metal atom react with organic ligand.

# **Reference**

- c. Jansen, H., et al., The Black Silicon Method a Universal Method for Determining the Parameter Setting of a Fluorine-Based Reactive Ion Etcher in Deep Silicon Trench Etching with Profile Control. Journal of Micromechanics and Microengineering, 1995. 5(2): p. 115-120.
- d. Mansano, R.D., P. Verdonck, and H.S. Maciel, Deep trench etching in silicon with fluorine containing plasmas. Applied Surface Science, 1996. 100: p. 583-586.
- e. Yeom, G.Y., Y. Ono, and T. Yamaguchi, Polysilicon Etchback Plasma Process Using Hbr, Cl2, and Sf6 Gas-Mixtures for Deep-Trench Isolation. Journal of the Electrochemical Society, 1992. 139(2): p. 575-579.
- f. Matsuo, P.J., et al., Role of N-2 addition on CF4/O-2 remote plasma chemical dry etching of polycrystalline silicon. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 1997. 15(4): p. 1801-1813.
- g. Syau, T., B.J. Baliga, and R.W. Hamaker, Reactive Ion Etching of Silicon Trenches Using Sf6/O-2 Gas-Mixtures. Journal of the Electrochemical Society, 1991. 138(10): p. 3076-3081.
- h. Demic, C.P., K.K. Chan, and J. Blum, Deep Trench Plasma-Etching of Single-Crystal Silicon Using Sf6/O2 Gas-Mixtures. Journal of Vacuum Science & Technology B, 1992. 10(3): p. 1105-1110.
- i. Yunkin, V.A., D. Fischer, and E. Voges, Highly Anisotropic Selective Reactive Ion Etching of Deep Trenches in Silicon. Microelectronic Engineering, 1994. 23(1-4): p. 373-376.
- j. Legtenberg, R., et al., Anisotropic Reactive Ion Etching of Silicon Using Sf6/O-2/Chf3 Gas Mixtures. Journal of the Electrochemical Society, 1995. 142(6): p. 2020-2028.
- k. Moss, S.J. and A. Ledwith, The chemistry of the semiconductor industry. 1987, Glasgow: Blackie. xiv, 426 p.
- 1. Langan et al., Method for plasma etching or cleaning with diluted NF.sub.3, US Patent 5413670, 1995.
- m. Wang, J.J., et al., High rate etching of SiC and SiCN in NF3 inductively coupled plasmas. Solid-State Electronics, 1998. 42(5): p. 743-747.
- n. Kim, B., et al., Use of a neural network to model SiC etching in a NF3 inductively coupled plasma. Modelling and Simulation in Materials Science and Engineering, 2005. 13(8): p. 1267-1277.

### **Future Plans**

#### **Next Year Plans**

- Perform thermodynamic calculations to assess potential impact and projected effectiveness
- Implement target chemistries and carry out plasma etching assessment

#### **Long-Term Plans**

- Formulate the models to predict etch product from plasma processes
- Propose the plasma chemistries via thermodynamic calculation

# Publications, Presentations, and Recognitions/Awards

#### **Presentation:**

- Presentation in Gordon Research Conference(GRC), July 2012
- Invited talk to AVS International Symposium, October 2012

#### **Publication:**

• Deliverable Report, P065582, "Non-PFC Plasma Chemistries for Patterning Complex Materials and Structures", January 2013

# **Industrial Interactions and** <u>Technology Transfer</u>

- Conference call with Intel, September 2012 (Satyarth Suri, Bob Turkot)
- Conference call with Intel, 30, November, 2012 (Satyarth Suri)
- Conference call with Intel, 10, January, 2013 (Satyarth Suri)
- Conference call with Intel, 21, February, 2013 (Satyarth Suri)
- Visit Intel, Portland, OR, 3, April, 2013, (Bob Turkot, Satyarth Suri)
- Conference call with SRC, 24, April, 2013 (Bob Haveman)