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Contamination Challenge and Yield Loss Iin
Integrated Circuit Industry
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» Particulate impurities on the wafer critically affects the device performance, reliability, and
product yield of integrated circuits.

» 50% of yield losses are due to particle contamination.

» Critical particle diameter and total particle count to be 14.2 nm and 13 #/wafer respectively for a
300 mm wafer by 2013

> Silicon and oxide loss to be less than 0.1 A per cleaning step.
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Megasonic Cleaning Process

= Sound waves with frequency of ~ 1 MHz or greater used in
combination with different cleaning chemistries for particle

removal
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eAdvantage: High particle removal efficiency (PRE)
eDisadvantage: May cause damage to fragile features
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Sound Pressure Amplitude

At 25 °C, density of water 997 kg/m3 and speed of sound in water = 1497 m/sec  ®
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*Note: Pressure amplitude is gauge pressure and
not absolute

Pressure amplitude (a) of sound
wave propagating at a speed cin a
medium of density p, is given by

a=./(21p,c)

— aisthe pressure amplitude
of the sound wave in Pa

— [ is the power density of the
transducer in W/m?

— p,is the density of the
medium in kg/m?3

— cisthe speed of sound in the
medium in m/sec

Assumptions: 1) No viscous loss
and 2) No bubbles in the
medium
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Effects of Acoustic Wave Propagation
Through a Liquid

» Reduction in Liquid Boundary Layer Thickness on a Surface
» Acoustic Streaming: Eckart, Schlichting , and Rayleigh

» Acoustic Cavitation: Stable and Transient

Cavitation —___

Stable Cavitation entails
only small oscillations of
bubbles about an
equilibrium size, while
transient cavitation is
characterized by large
bubble size variations and
eventual bubble collapse

Microstreaming
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Microstreaming (due to Stable Cavitation)

¢ Microstreaming occurs due to
oscillating bubbles acting as
secondary sources of sound

s It often results in significant
fluid movement and can be
instrumental in particle removal
during megasonic cleaning

Oscillation amplitude of stable
bubbles is on the order of few microns
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Stable Cavitation J

Correlation Between Frequency of Oscillation of Stable Bubbles and their Size

1/2
f, = (2n) 22, [PO +2—"j— o
PR, R ) PR,

r

p s the density of the liquid, f, is the resonant frequency of the bubble,
R, is the radius of the resonating bubble, y is the ratio of specific heat of the gas

dissolved in liquid, P, is the steady pressure (atmospheric) in the absence of the
sound field, o is the surface tension of liquid

e When surface tension effect can be neglected,
— 3 —1/2

f = @r)Y T

PR,
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Correlation Between Frequency of Oscillation of

Stable Bubbles and their Resonant Size
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Transient Cavitation

Blake Threshold

Blake Threshold Pressure is the minimum pressure required for explosive growth of a gas bubble

€
- -1/2 E 10— Holland, C, PhD dissertation, Yale University (1989)
°
5 _p .80 30 2 Ethanol/Ethylene glycol mixture
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where P, is the Blake threshold pressure,
o is the surface tension of the liquid, 0 | | | |
P, is the equilibrium pressure of the 0 1 2 3
liquid, and Ry is the initial gas bubble
radius Initial Radius (micron)

The Blake threshold for water is higher than that for a mixture of ethylene glycol and ethanol due
to the higher surface tension of water (0.072 Vs 0.032 N/m while density and viscosity are same)
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Various Thresholds and their Significance in
Transient Cavitation

Transient Threshold
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Blake threshold, stable threshold and
transient threshold for saturated
water at an initial pressure of 1 bar
and a source frequency of 20 KHz

P_, = acoustically applied pressure

P, = equilibrium pressure of the liquid
R, = initial radius of bubble

R,= resonant size of bubble

Adapted from: E. Neppiras, Ultrasonics, 18, pp.
201-209 (1980)
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Consequence of Transient Cavitation

Shock Wave and Fluid Jet Formation

n
o

¢ Dynamics of bubble collapse
depend on the distance of
separation between the solid
boundary and the bubble center
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Liquid velocity at the
shock front (m/s)

Liquid velocity at the
shock front (m/s)
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greater the radius of the bubble Initial bubble radius (um) Initial bubble raits (km)
Initial sphere

— shock waves are emitted

V. Minsier, J. Proost,, Ultrason.

Increasing Sonochem., In Press (2007)
Time (AtoJ)

+* Distance is lower than three
times the bubble radius — liquid

. . M. Plesset and R. Chapman, The Journal
Jet formatlon of Fluid Mechanics, vol 47, 2, pp. 283-

290 (1971)
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Common Techniques Used for
Characterizing Cavitation

Acoustic Emission Based
(pressure field in
the liquid)

|

Measured using a Hydrophone

Sonoluminescence Based

(light emission from cavitating
bubbles)

|

Measured using a Photomultplier Tube (PMT)

and/or a spectrometer
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Measurement of Size Distribution of Stable Bubbles
Using Hydrophone Data

Electrical signal to oscilloscope Oscilloscope (PCI-5102 and

i NI- USB 5133) (10-20 samples
per usec, few million
samples per acquisition)
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* p is the density of the liquid, f, is the resonance frequency of the bubble, R, is the radius of the resonating bubble, ¥ is the
ratio of specific heats of the gas, P, is the steady pressure in the absence of the sound field, ois the surface tension of liquid
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Sonoluminescence (SL) from Cavitating Bubbles
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Figure adapted from:
Nature Reviews
Cancer 5, 321-327 (2005)

Cavities are
Bubbles,

usually filled
with gases

STABLE CAVITIES

During the wave cycle
cavities oscillate in size.
If they do not implode, they
are called STABLE Cavities
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TRANSIENT CAVITIES

If they implode, they are
called TRANSIENT Cavities.
When they implode they
release LIGHT, giving
SONOLUMINESCENCE

Suslick and Co-workers (J. Phys.
Chem. A 1999) have reported
T,..x of ~ 4000 deg C for Argon
saturated solutions.

» At collapse, the gas inside the cavity reaches extremely high temperatures (a few thousand degrees ) and
pressures (a few hundred bars).

> Results in production of excited radical species

> Excited species comes back to the ground state with photon emission.
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How to Measure Sonoluminescence (SL)??

U

Cavitation Probe

Mark Beck

» Detects Sonoluminescence
Prosys

produced by Cavitation
(Spectral Range 270 -650 nm)

» Real Time Monitoring of

Cleaning Fluid
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Cavitation Threshold Cell
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Duty Cycle 10 %
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Pulse period 50 ms
Duty Cycle 100 %
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Time, ms 50
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Sonoluminescence from DI Water Saturated with
Different Gases

Relative Intensity | Thermal Conductivity
(102 Wm-K1)

N, 0.51 2.52
0, 1.0 1.64
co, 0.36 1.56
He 0.48 14.3
Ne 1.33 4.72
Ar 12.5 1.73
Kr 21 0.94

F. Young, J. Acoust. Soc. Am. Volume 60, 1, pp. 100-104 (1976)

» Agqueous solution containing saturated level of gas was subjected to 20 KHz sound
frequency at 10 W/cm? and SL was measured by a photomultiplier tube (165 to 650 nm)
» In general , gases with Higher thermal conductivity showed lower SL

17
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SL in DI Water Saturated With Different Gases J
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> All gases except CO, (pH ~ 4, dissolved CO, ~ 1100 ppm) are capable of generating
SL. CO, is completely incapable

> N, and O, saturated DI Water generates SL efficiently even though Ar, a gas
believed to be essential for SL, is presumably absent
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SL, Photons/sec

Sonoluminescence Suppression by Bubbling of CO,

CO, Effect
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CO, > 60 ppm suppresses SL almost completely.

Addition of CO, decreases levels of other

dissolved gases slightly.

Vaccum Degassing Effect
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When Air-saturated DI Water is vaccum degassed
to a comparable level, SL remains unaffected. Thus,
SL suppression is due to added CO, and not due to

removal of other gases upon addition of CO,.
19
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Dependence of Maximum Temperature Inside a Bubble
on Gamma (C,/C)) of Dissolved Gas
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T =Max Temperatue, Q = Initial Pressurein the Bubble, Polytropic Index ()

T, = Initial Temperatue, y = Polytropic Index
P, = AcousticPressure Amplitude,
P, =Pressure in Bulk Solution in Absenceof Sound Waves
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[ Effect of Dissolved Gases on Damage to Features ]
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Courtesy of IMEC Dissolved gases affect feature damage
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