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OverviewOverview
BackgroundBackground
Objective
Quartz crystal microbalance with 
dissipation monitoring (QCM-D) and Voigtdissipation monitoring (QCM D) and Voigt 
modeling
R l d d ki ti f d it dRelease degree and kinetics of deposited 
multiwalled carbon nanotubes (MWNTs) 
from silica surfaces
ConclusionsConclusions
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Carbon Nanotubes (CNTs)Carbon Nanotubes (CNTs)

www.basesciences.com

Single-walled Multiwalled nanotubes

http://itech.dickinson.edu

Single-walled 
nanotubes
(SWNTs)

Multiwalled nanotubes
(MWNTs)

( )
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Application of Carbon Nanotubes (CNTs)Application of Carbon Nanotubes (CNTs)

MechanicalMechanical 
properties: 
high strength; 
light weight

www.bayerus.com

g g

Electronic 
properties: 
semiconductingsemiconducting 
or metallic

Sekitani et al., Nature Materials,
2009, 494‒499

Cao et al., Nature, 2008, 
495‒5004



Toxicity of Carbon NanotubesToxicity of Carbon Nanotubes
Cause embryotoxicity in miceCause embryotoxicity in mice
Inactivate microorganisms

Penetrate human keratinocytes and lymphocytes
Kang et al., ES&T, 2009, 2648-2653 Vecitis et al., ACS Nano, 2010, 5471-5479
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Fate and Transport of CNTsate a d a spo t o C s
Oxidation of CNTs during transport in natural 

d i d ti t
O2 Cl2 •OH

and engineered aquatic systems

HClOO3 UV
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Fate and Transport of CNTsate a d a spo t o C s
Oxidation of CNTs during transport in natural 

d i d ti tand engineered aquatic systems

=O 

COO–COOH 
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Fate and Transport of CNTsate a d a spo t o C s
Oxidation of CNTs during transport in natural 

d i d ti tand engineered aquatic systems

=O 

COO–COOH 

Deposition and remobilization of CNTs onDeposition and remobilization of CNTs on 
naturally occurring surfaces, e.g., silica surfaces
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ObjectiveObjective

To investigate the influence of solutionTo investigate the influence of solution 
chemistry on the degree and kinetics of 
MWNT l f ili fMWNT release from silica surfaces
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Oxidization and Characterization of MWNTs

Expose pristine MWNTs to a 3:1 acid mixture of 
98% H SO and 69% HNO98% H2SO4 and 69% HNO3
The distribution of oxygen-containing functional 
groups was quantified by XPS in conjunctiongroups was quantified by XPS in conjunction 
with vapor phase chemical derivatization
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Yi and Chen, Langmuir 2011, 27, 3588–3599.



Electrophoretic Mobilities (EPMs) of 
MWNTs in NaCl and CaCl2 Solutions
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Quartz Crystal Microbalance with 
Di i ti M it i (QCM D)Dissipation Monitoring (QCM-D)

Laminar flow at 0.6 mL/min
[MWNT] = ca. 0.5 mg/L[ ] g
T = 25 ºC, pH = 7.1
Frequency (f ) and Dissipation (D)eque cy ( ) a d ss pat o ( )
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Quantifying the Surface Mass Concentration 
f D it d MWNT i V i t M d lof Deposited MWNTs using Voigt Model

V i t d l i l d f i l ti lVoigt model is commonly used for viscoelastic layers

∆f and ∆D are functions of surface mass∆f and ∆D are functions of surface mass 
concentration (m), shear modulus (μ), and viscosity 
(η) of CNT layer(η) of CNT layer

∆f and ∆D (5th, 7th, 9th, and 11th) were fitted with ( , , , )
Voigt model using m, μ, and η as fitting parameters

Thus, the surface mass concentration of MWNTs can 
be quantified throughout the deposition and release 
experiment
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Quantifying the Surface Concentration of 
Deposited MWNTs using Voigt Model
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Release of MWNTs from 
Silica Surfaces after Deposition in CaCl2
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Release of MWNTs were mainly through 
Detachment from Silica Surfaces
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Particle Release from Primary Minimum 
when Surface Potentials Increased

ɸtot = ɸedl + ɸvdw + ɸBorn

|ɸ - ɸ i | is reduced|ɸmax ɸmin| is reduced 
as surface potential (ψ) 
increases

Energy barrier for 
particle release

The ψ of both MWNTs 
and silica surfaces particle release

= |ɸmax - ɸmin| were enhanced when 
1.5 mM CaCl2 was 

l d b 1 Mreplaced by 1 μM 
CaCl2

Ruckenstein and Prieve, AIChE Journal, 1976, 276-283
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Release of MWNTs from 
Silica Surfaces after Deposition in NaCl
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Particle Release from Primary Minimum 
when Ionic Strength Decreased

IS=
Energy barrier for

|ɸmax - ɸmin| is reduced 
as ionic strength (IS)Energy barrier for 

particle release
= |ɸmax - ɸmin|

as ionic strength (IS) 
decreases when 
constant charge 
assumption is made

Constant charge 
assumption is 
appropriate for both 
MWNTs and silicaMWNTs and silica 
surfaces

Ruckenstein and Prieve, AIChE Journal, 1976, 276-283
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Sequential Release of MWNTs from 
Sili S f i C ClSilica Surfaces in CaCl2
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Sequential Release of MWNTs from 
Sili S f i C ClSilica Surfaces in CaCl2

Surface charges of MWNTs 
and silica were enhanced 
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Sequential Release of MWNTs from 
Sili S f i N ClSilica Surfaces in NaCl
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Influence of pH on the 
D f MWNT R l i N ClDegree of MWNT Release in NaCl
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Influence of pH on the 
D f MWNT R l i C ClDegree of MWNT Release in CaCl2
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Influence of pH on the 
D f MWNT R l i C ClDegree of MWNT Release in CaCl2
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Influence of pH on the 
D f MWNT R l i C ClDegree of MWNT Release in CaCl2
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Initial Rates of MWNT Release 
f Sili S ffrom Silica Surfaces
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Release Kinetics under e ease e cs u de
Complete Release Conditions
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Release Kinetics under 
P ti l R l C ditiPartial Release Conditions
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Influence of Solution Chemistry on 
th R l Ki ti f MWNTthe Release Kinetics of MWNTs

   0.1 mM CaCl2
0 01 M C Cl

1.5 mM

100

 

W
N

Ts
 

s,
 f t (%

)  0.01 mM CaCl2
   0.001 mM CaCl2
   1 mM NaCl

  CaCl2

Release rate 
ffi i t k

80

si
te

d 
M

W
ur

fa
ce

s coefficient k

Fraction of 
d it d

40

60

 

e 
de

po
s

si
lic

a 
su deposited 

MWNTs that can 
be released

20

n 
of

 th
e

ng
 o

n 
s be released 

freleasable = 

(m –m )/m )
0 20 40 60 80

0

Fr
ac

tio
n

re
m

ai
ni

Time (min)

(m0 –mstable)/m0)

30

F r Time (min)
 releasable

kt
releasablet feff   1



Influence of Solution Chemistry on 
th F ti f R l bl MWNT fthe Fraction of Releasable MWNTs, freleasable
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Influence of Solution Chemistry on 
th R l R t C ffi i t kthe Release Rate Coefficient, k
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Influence of MWNT Surface Coverage
th R l R t C ffi i ton the Release Rate Coefficient
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ConclusionsConclusions
The deposited MWNTs were released from primaryThe deposited MWNTs were released from primary 
minimum at lower electrolyte concentrations.  This 
release behavior is consistent with Ruckenstein andrelease behavior is consistent with Ruckenstein and 
Prieve theory
The stepwise release at decreasing CaCl2 and NaClThe stepwise release at decreasing CaCl2 and NaCl 
concentrations may be due to the heterogeneity of 
MWNT surface charge density g y
Decreasing pH has different effects on the degree of 
MWNT release in the presence of NaCl and CaCl2p 2
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ConclusionsConclusions
The release kinetics of MWNTs can be described byThe release kinetics of MWNTs can be described by 
a two-fraction first-order release model 
Both the fraction of releasable MWNTs and theBoth the fraction of releasable MWNTs and the 
release rate coefficient increased with decreasing 
electrolyte concentrations due to lower energyelectrolyte concentrations due to lower energy 
barrier for MWNT release
Increasing the surface coverage of MWNTs mayIncreasing the surface coverage of MWNTs may 
retard the release kinetics of MWNTs, probably due 
to the formation of surface-bound aggregates and gg g
the resultant decreased diffusion rate coefficient
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