Interaction of Molecular Contamination with Surfaces

Junpin Yao, Asad Iqbal, Harpreet Juneja and Farhang Shadman

Chemical and Environmental Engineering, University of Arizona

ERC Teleseminar

Thursday, October 18, 2007
Interaction of Molecular Contamination with High-k Dielectric Films
HfO$_2$ and ZrO$_2$ have higher IPA adsorption loading than SiO$_2$

IPA loading order: ZrO$_2$ > HfO$_2$ > SiO$_2$

Same trend was observed over a wide range of concentrations
Experimental Procedure

Step 1. Moisture challenge (conc: 56 ppb)
Step 2. IPA challenge (conc: 107 ppb)

- Presence of one contaminant can affect adsorption/desorption characteristics of other contaminants.
- Moisture hydroxylates oxide surfaces; the hydroxyl groups change the nature of the surface.
- Pre-adsorbed moisture enhances IPA adsorption on SiO$_2$, but reduces IPA adsorption on HfO$_2$ and ZrO$_2$.
- IPA is more attracted to bare HfO$_2$ and ZrO$_2$ surfaces than to hydroxylated surfaces. Presence of H$_2$O reduces their affinity for IPA.
Interaction of IPA with Hydroxylated Surfaces

- D_2O-covered surface exposed to IPA

- $\text{C}_3\text{H}_7\text{DO}$ (m/e = 46) formed when IPA is introduced on D_2O-covered ZrO_2

- $\text{C}_3\text{H}_7\text{DO}$ may be formed by surface interactions between IPA and D_2O

- $\text{C}_3\text{H}_7\text{DO}$ is also formed in the APIMS plasma (source) from interactions between IPA and D_2O

- Sample-gas ionization in the APIMS is accomplished by electron impact at atmospheric pressure

- Extensive collisions among molecules in the APIMS plasma source produce intermediate species (for example, $\text{C}_3\text{H}_7\text{DO}$)

- A technique was required to characterize and separate post-reactor interferences due to plasma effect

Graphical Data

- Time, h
- APIMS response, cps

Chemical Formulas

- $\text{C}_3\text{H}_7\text{DO}$

SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
Low Concentration Multicomponent Adsorption Model

- Oxide surface
- Vacant surface site (Metal atom)
- Chemisorbed hydroxyl group
- Surface physisorbed IPA
- Surface chemisorbed IPA

Diagram:
- H_2O
- $\text{CH}_3-\text{CH}-\text{CH}_3$
- OH
- O
- H
- X

Legend:
- A
- B
- C

SR/2000 Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
Conclusion

- ZrO$_2$ was shown to form the strongest metal-hydroxyl (M-OH) bond and adsorb IPA stronger than SiO$_2$ and HfO$_2$

- ZrO$_2$ should not be the material of choice from the standpoint of molecular contamination

- Isotope labeling with D$_2$O indicated chemisorption of IPA on hydroxylated surfaces via an esterification reaction
Interaction of Molecular Contamination with Low-k Dielectric Films
Contamination Behavior of Low-k Materials

• Low-k inter-layer dielectrics (ILD) are highly prone to molecular contamination, especially if it porous

• Potential issues associated with molecular contamination of low-k materials:
 - Their ability to absorb chemicals, such as contaminants containing polar O-H bonds due to their porous structure
 - Increase in k values, create adhesion problems, and cause reliability issues.
 - Signal propagation delays and cross-talk between interconnects

• Characterization of sorption behavior of new low-k films will assist in deciding their potential for successful integration in semiconductor processes
Research Objectives

• Determine the fundamentals of moisture interactions and outgassing in both uniform and non-uniform porous low-k films:
 • Loading
 • Transport, incorporation and removal of moisture in all forms in the matrix
 • Mechanism of interactions of moisture and organics with wafer surfaces

• Develop experimental and process modeling techniques for minimizing the chemical and energy usage during cleaning and purging of low-k films
Experimental Setup

- **Atmospheric Pressure Ionization Mass Spectrometer (APIMS)**
- **Cavity Ring Down Spectroscope (CRDS)**
- **Electron Impact Mass Spectrometer (EIMS)**
- **Fourier Transform Infrared Spectrometer (FTIR)**
Experimental Procedure

Experimental procedure

Isothermal adsorption and desorption

Temporal profile

Exposure to 110 ppb moisture; followed by temperature-programmed desorption

SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
Moisture Loading and Retention Comparison

Challenge Concentration: 56 ppb; Purge Time: 10 hr

Porous low-k films have much higher sorption loading than SiO₂

Moisture removal is a very slow process
Dynamics of Moisture Removal

Purge gas purity: 1 ppb

p-MSQ samples:
A: 10s etch in N₂H₂, 20s ash
B: 10s etch in HeO₂, 20s ash
C: 10s etch in H₂, 20s ash

BD IIx samples:
A: Blanket
B: NH₃-plasma treated
C: NH₃He-plasma treated

Moisture challenge concentration: 153 ppm

Moisture Removed (%)

Moisture challenge concentration: 181 ppb

Moisture removed is a very slow process

Temperature: 380 °C

Temperature: 25 °C

SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
Moisture Transport Pathways in Porous Low-\(k\) Film

- Gas flow
- Desorption from matrix
- Transport in pores
- Permeation in matrix
- Exchange between matrix and pores

Substrate

Porous low-\(k\) film

SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
Transport of moisture in matrix:

\[
\frac{\partial C_S}{\partial t} = \frac{1}{1 - \varepsilon} \frac{\partial}{\partial z} \left[(1 - \varepsilon) D_S \frac{\partial C_S}{\partial z} \right] - \frac{\varepsilon}{1 - \varepsilon} k_m S_p \left(\frac{C_S}{S} - C_g \right)
\]

Transport of moisture in pore:

\[
\frac{\partial C_g}{\partial t} = \frac{1}{\varepsilon} \frac{\partial}{\partial z} \left[\varepsilon D_g \frac{\partial C_g}{\partial z} \right] + k_m S_p \left(\frac{C_S}{S} - C_g \right)
\]

- C_S / C_g: Moisture concentration in matrix / pore;
- D_S / D_g: Moisture diffusivity in matrix / pore;
- ε: Film porosity;
- S_p: Specific surface area;
- S: Moisture solubility in matrix;
- k_m: Interphase transport coefficient between pore and matrix;
Validation of Model

Sample: p-MSQ A, partial etch for 10s in N$_2$H$_2$ and 20s ash;
Moisture challenge concentration: 1500 ppm; Temperature: 25 °C

Two smooth curves are model predictions

Estimated parameters:
- D_s: 1×10^{-15} to 1×10^{-12} cm2/s
- D_g: 1×10^{-10} to 1×10^{-8} cm2/s
- S: 1×10^3 to 1×10^5 cm3(gas)/cm3(solid)

Good agreement between the model and the experimental data
Cell Design
Purge Dynamics of IPA in Empty Cell

The cell is well purged, no accumulation

Peak Area: 2950 – 3000 Wave number
Outgassing Dynamics of IPA using FTIR

FTIR Spectra for IPA Exposure

Unexposed sample

Purge time ~27 hr

12 hr liquid IPA exposure

BD IIx, NH₃He-plasma treated, k~2.6
Outgassing Dynamics of IPA using FTIR

Desorption

BD IIx, NH₃He-plasma treated, k~2.6

Peak Area: 2950 – 3000 Wave number

IPA removal is a slow process
IPA Outgassing Comparison

Initially the samples were saturated with liquid IPA; Purge gas: UHP N₂; FTIR peak at 2950-3000 cm⁻¹ (-CH₃ stretching)
Conclusion

- FTIR looks a promising technique to study dynamics of impurity interaction with thin films.
- A novel cell was designed to study outgassing dynamics.
- IPA removal depend on the low-k type and the processing conditions.
- Etching and ashing affects IPA interaction.

Future Work

- Extend this study for moisture interaction with low-k films.
- Study the effect of multicomponent on outgassing dynamics.
Interaction of Molecular Contamination with EPSS Surface
1. Moisture removal is a slow process in gas-distribution system.

Sample: EP SS tubing, 0.5 in OD, 70 cm length
Background

2. Surface adsorption and desorption, back diffusion, dead legs, and pressure fluctuation can cause fluctuation of moisture concentration in gas distribution system.
Research Objective

To develop a model that allows us to optimize the purge process for moisture contaminated gas distribution system, in other words, with shortest time and lowest chemical and energy cost.
Experimental Setup

- Atmospheric Pressure Ionization Mass Spectrometer (APIMS) – ppb levels
Experimental Procedure

Temporal profile of moisture absorption/desorption

Outlet Gas Moisture Conc., ppb

Time, h

Absorption at 25 ºC; Desorption at 25 ºC; Challenge Conc.: 56 ppb
Model Development for Mass Transport in Cylindrical Tubing

Moisture sorption on tubing wall:

\[\frac{\partial C_s}{\partial t} = k_{ads} C_g (S_0 - C_s) - k_{des} C_s \]

Governing equation for gas phase:

\[\frac{\partial C_g}{\partial t} = D_L \frac{\partial^2 C_g}{\partial z^2} - u \frac{\partial C_g}{\partial z} + \frac{A_S}{V} (k_{des} C_s - k_{ads} C_g (S_0 - C_s)) \]

- \(C_s \): Moisture concentration on wall, mol/cm\(^2\);
- \(C_g \): Moisture concentration in gas, mol/cm\(^3\);
- \(k_{ads} \): Adsorption rate constant, cm\(^3\)/mol/s
- \(k_{des} \): Desorption rate constant, 1/s
- \(S_0 \): Site density of surface sorption, # of sites/cm\(^2\);
- \(D_L \): Dispersion coefficient, cm\(^2\)/s
- \(u \): Velocity, m/s; \(A_S \): Surface area of wall, m\(^2\); \(V \): Volume of tubing, m\(^3\)
Model Validation at Different Concentrations

Purge gas flow rate: 350 sccm; Temperature: 25 ºC;
Purge gas purity: 1 ppb,

Smooth curves are model prediction

k_{ads}: 3.359×10^9 cm3/mol/s;
k_{des}: 4×10^{-4} 1/s;
S_0: 6.29×10^{13} # of sites/cm2;
D_L: 1.82 cm2/s
Effect of Purge Flow Rate

Challenge conc.: 181 ppb; Temperature: 25 °C; Purge gas purity: 1 ppb; Length: 0.9 m

Percentage of Moisture Removal

<table>
<thead>
<tr>
<th>Time, min</th>
<th>0</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>350 sccm</td>
<td>0</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>700 sccm</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>80</td>
</tr>
</tbody>
</table>

SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
Effect of Purge Gas Purity

Challenge conc.: 181 ppb; Temperature: 25 ºC; Flow rate: 350 sccm; Length: 0.9m

Percentage of Moisture Removal vs. Time, min
Effect of Purge Gas Temperature

Challenge conc.: 181 ppb; Temperature: 25 ºC;
Flow rate: 350 sccm; Purge gas purity: 1 ppb

\[E_{\text{ads}}: \sim 19 \text{ kJ/mol}; \quad E_{\text{des}}: \sim 47 \text{ kJ/mol} \]

* Reference data
Model Application: Extension of Transfer Line

Challenge conc.: 181 ppb; Temperature: 25 ºC;
Flow rate: 350 sccm; Purge gas purity: 1 ppb
Moisture Distribution along the Tubing at Different Purge Times

Challenge conc.: 181 ppb; Temperature: 25 ºC; Flow rate: 350 sccm; Purge gas purity: 1 ppb

Surface Moisture Concentration

\[\times 10^{-11} \text{ mol/cm}^2 \]

Length, m

1 – 0 min;
2 – 10 min;
3 – 20 min;
4 – 30 min;
5 – 60 min;
6 – 180 min;
Model Application: Back Diffusion at Laterals

Governing equation for bulk gas:

\[
U = 2U_{avg} \left[1 - \left(\frac{r}{R} \right)^2 \right] \]

\[
2u_{avg} \left[1 - \left(\frac{r}{R} \right)^2 \right] \frac{\partial C_g}{\partial z} + D_g \frac{\partial^2 C_g}{\partial z^2} + \frac{D_k}{r} \frac{\partial}{\partial r} \left(\frac{r \partial C_g}{\partial r} \right) = 0 \]

The boundary conditions used for Eq. 2 are:

1. \(C_g = C_{g_0} \) at \(z = 0, \ 0 \leq r \leq R \) \[3\]
2. \(C_g = C_{g_0} \) at \(z = L, \ 0 \leq r \leq R \) \[4\]
3. \(\frac{\partial C_g}{\partial r} = 0 \) at \(r = 0, \ 0 \leq z \leq L \) \[5\]
4. \(-D_g \frac{\partial C_g}{\partial r} = k_a C_g - k_d C_g \) at \(r = R, \ 0 \leq z \leq L \) \[6\]

Governing equation for surface diffusion:

\[
k_a C_g \big|_{r=R} - k_d C_s + D_s \frac{\partial^2 C_g}{\partial z^2} = 0 \]

\[
C_s = \frac{k_a}{k_d} C_g \quad \text{at} \quad z = 0 \]

\[
C_s = \frac{k_a}{k_d} C_{g_0} \quad \text{at} \quad z = L \]
Back Diffusion at Laterals-Simplified model

Governing equation:

\[D_L \frac{\partial^2 C_g}{\partial z^2} - u \frac{\partial C_g}{\partial z} = 0 \]

BC:

\[
\begin{align*}
z = 0, & \quad C_g = C_{g0} \\
Z = L, & \quad C_g = 1 \text{ ppb}
\end{align*}
\]

\(C_g \): Moisture concentration in gas, mol/cm\(^3\);
\(D_L \): Dispersion coefficient, cm\(^2\)/s;
\(u \): Velocity, m/s;
\(C_{g0} \): Ambient moisture concentration

Back diffusion direction

Gas flow direction

1 ppb

1: Bulk Convection
2. Bulk diffusion
Back Diffusion at Laterals

----Contd.

Moisture profile along the lateral (Length: 2 m)

1: Bulk Convection
2. Bulk diffusion

Length, m

SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
Conclusion

1. The combination of experiments and modeling we have developed helps in optimizing the dry-down time and lower the purge-gas and energy consumption during system start-up or recovery.

2. This technique can be used to minimize the back diffusion problem.
Future Work

1. Extend the application of the model

 Single tubing \rightarrow one lateral \rightarrow More laterals \rightarrow Complex gas delivery system

2. Effects of dead legs and pressure fluctuation
Acknowledgement

Dr. Farhang Shadman Advisor, Regents Professor in Chemical Engineering and Optical Sciences Department, U of Arizona

Dr. Roger Sperline Professor in Chemistry Department, U of A for helping with FTIR Analysis

Dr. Prashant Raghu Process Engineer, Micron

Carl Geisert Az/FSM Sr. Principal Engineer, Intel Corporation

Dr. Ting Tsui Assistant Professor, U of Waterloo, formerly at Texas Instruments

Sematech (Interconnect Group) For partial support of this research

Texas Instruments (SiTD)

Intel Corporation

SRC/Sematech ERC

for Environmentally Benign Semiconductor Manufacturing