Achieving Small Dimensions with an Environmentally Friendly Solvent: Photoresist Development Using Supercritical CO$_2$

Nelson Felix1, Anuja De Silva2, and Christopher K. Ober3

1School of Chemical and Biomolecular Engineering, Cornell University
2Department of Chemistry and Chemical Biology, Cornell University
3Department of Materials Science and Engineering, Cornell University

ERC Teleseminar, Nov. 1, 2007
Outline

• Supercritical CO$_2$ as a development solvent
 – Advantages
 – Use with polymeric photoresist systems

• Small molecule photoresists
 – Potential advantages
 – Solubility in scCO$_2$
 – Patterning performance
Supercritical CO₂ Basics

- **Supercritical CO₂**
 - Tunable, non-polar solvent with the ability to dissolve select non-polar materials
 - T_c = 31C, P_c = 1070psi (77 bar)

Supercritical CO${}_2$ in Industry

- Extraction of essential oils from organic matter
 - Cinnamon, ginger, sandalwood, etc
 - Pharmaceutical applications

- Decaffeination of coffee
 - CO${}_2$ replaced CH$_2$Cl$_2$ as solvent, removed only caffeine

- Dry Cleaning
 - Addition of surfactants

- Wafer cleaning
 - BOC Edwards DFP-200
 - Critical Point Dryer
Next Generation Lithography: Key Problems

<table>
<thead>
<tr>
<th>Pattern Variations</th>
<th>Pattern Collapse</th>
<th>Non-polar Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 3nm for 32nm node</td>
<td>Reduce surface tension</td>
<td>Low-κ applications</td>
</tr>
</tbody>
</table>

Pattern Variations

- Non-polar Materials
 - Low-κ applications

Pattern Collapse

- **Formula:**
 \[P = \frac{\sigma}{R} = \frac{2\sigma \cos \theta}{d} \]

- **Condition:**
 @ 50nm L/S, aspect ratios >2:1 collapse w/ water

Non-polar Materials

- Lack of appropriate non-polar developers
 - Must use multilplicative subtractive steps

SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
Advantages of Supercritical CO$_2$ Development

Elimination of organic solvents and ultra-pure water during processing

2 gram DRAM chip \rightarrow 32 kg of water

Liquid-like density, Tunable Solvating Power

Gas-like transport

Penetrates crevices, no residue

Harmful solvents are cleanly separated via depressurization

No surface tension, eliminates pattern collapse

Fluorinated scCO2 Soluble Photoresists

- First platform for soluble polymeric photoresists
 - Copolymerize traditional photoresist monomers with fluorinated monomers

- Negative tone

\[
\begin{align*}
\text{Soluble} & : \quad \text{Insoluble} \\
\text{Sundararajan, et al. 193 nm exposure.}
\end{align*}
\]

- Block copolymer (Cornell) and random copolymer (UNC) versions demonstrated.

Positive Tone Resists for scCO\textsubscript{2} Development

Two-step positive-tone

\[
\begin{align*}
\text{PAG} & \quad \text{hv} \quad \text{H}^+ \\
\text{HMDS} & \quad \Delta \\
\end{align*}
\]

- Balance must be struck between resist solubility (increase F) and contrast (increase functionality)
Resist Fluorination

• Advantages
 – High transparency at 193 nm, 157 nm exposure wavelengths
 • Library of fluorinated monomers
 – Simple to increase scCO2 solubility with monomer inclusion

• Disadvantages
 – Low plasma etch resistance of F-containing structures
 – Surface compatibility: low surface energy
 – Low glass transition temperatures (Tg)
 • Difficult to keep sharp pattern shape
 • Low contrast
Reduce Fluorination

Perfluorinated octyl compounds have been shown to bioaccumulate and disrupt cellular functions.

Environmentally friendly? → reduce need for fluorination
Reducing Fluorination: Using Cosolvents

- Increase solvent density
- Tune polarity of fluid
- Specific interaction with a comonomer

- 1 vol% ethanol very little effect
- 2 vol% ethanol 100% removal

2 vol% ethanol (1.5 mol%, 1.6 wt%) in scCO₂
P = 5000 psi, T = 45°C, t = 10 min

Additives for Processing Conventional Resists

- Patent literature full of examples of surfactant libraries used for scCO2 dissolution of photoresists
 - Fluorinated or hydrocarbon tails
 - Polar or carboxylate heads
 - Mostly seen for pattern cleaning/drying

- Recent work by Micell Technologies on reactive ionic additives to impart scCO2 solubility to conventional photoresists
‘CO$_2$ Compatible Salts’

- Rather than ionic surfactants, reactive fluorinated salts added to solution
 - Interact with weak acidic groups of photoresist to impart solubility
 - Due to lower amounts of acidic groups, unexposed regions gain sufficient solubility first
 - Presence of generated acid in exposed regions inhibits reaction with photoresist

\[
\text{N}^+ (\text{CH}_2)_3 (\text{CF}_2)_5 \text{CF}_3 \\
(\text{CH}_2)_3 \\
(\text{CF}_2)_5 \\
\text{CF}_3 \\
\text{Unknown counterion}
\]

Aqueous TMAH develop

CO$_2$/CCS develop

DeYoung, J., et al., SPIE v 6153 I 2006, p 615345.
Molecular Glass Photoresists

- Small molecule size ~1-2nm
- Well defined molecular structures
 - No distribution of mass
- Low tendency towards crystallization
 - bulky irregular shape or different conformation states
- Strong intermolecular attractive forces for high Tg
 - Specific interactions such as H-bonding

Images obtained at Lawrence Berkeley National Laboratories by EUV microexposure tool
Molecular Glass Resist Solubility in scCO2

- Due to their small size, these resist materials have the potential for scCO2 solubility w/o fluorine
- Balance between size and polar functionality

Recent example

Solubility Switching

From FTIR data, solubility switch happens below <80% tBOC protection.
High Resolution MG Resist for Supercritical CO₂

Contrast Curve, 300 bar

- R = -H or -tBOC

50 nm
~3:1 aspect ratio

Dissolution Rate Measurements

\[D = \frac{\lambda}{2\sqrt{n_2^2 - n_1^2 \sin^2(\theta)}} \]

\[\lambda = 632.8 \text{ nm} \]

\[n_1 = \text{solvent refractive index} \]

\[n_2 = \text{film refractive index (\sim 1.55)} \]
Increasing pressure

40°C

Reflecting intensity vs. seconds

Pressure vs. nm/min.

40°C, 50°C

Cornell University
SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
Effects of polarity

- Molecules with less than 3 –OH groups still significantly soluble.
- Effect more pronounced at lower temperatures.
- Indicative of contrast between exposed and unexposed regions.
Effect of molecular weight, Tg

- Necessary pressure to achieve dissolution rate increases predictably with larger MW.
- However, photoresists approaching 2000 g/mol still soluble in scCO2!

Going forward

• Methodology in place for predicting, measuring scCO$_2$ solubility, especially with small molecules
 – Patterning possible with high Tg materials

• Can be expanded to positive-tone materials
 – Need chain-scission type resist materials
Calix[4]resorcinarenes

<table>
<thead>
<tr>
<th></th>
<th>Tg (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>calix-tboc</td>
<td>107</td>
</tr>
<tr>
<td>4hp-calix-tboc</td>
<td>84</td>
</tr>
<tr>
<td>4tb-calix-tboc</td>
<td>110</td>
</tr>
<tr>
<td>4si-calix-tboc</td>
<td>140</td>
</tr>
</tbody>
</table>

Graph showing the relationship between pressure (PSI) and mm/min for different resorcinarenes.
Patterning

- As expected, sub-100nm performance shown with calix[4]resorcinarenes developed in scCO2
De-crosslinking Resists for Positive Tone

- **PMMA is classic example**
 - High resolution e-beam, EUV resist with low LER
 - Problem: low sensitivity

- **Acid catalyzed de-crosslinking**
 - Improved sensitivity
 - Use acetal bonds to crosslink otherwise scCO$_2$ soluble species

[Diagram showing the process of spin coating, annealing, exposure, and scCO$_2$ treatment]
Acetal-backbone polymers

- Optimal system for scCO2 development
 - Bisphenol-type compounds shown to be scCO2-soluble
 - Large changes in molecular weight lead to solubility contrast
Patterning

- Electron-beam patterning, 100kV, Cornell
- Develop in scCO2: 40C, 2000 psi (140 bar)
- First intrinsic positive-tone system for scCO2 development!
Summary

• Along with being environmentally friendly, supercritical CO2 shows performance advantages.

• Molecular glass photoresists have shown good performance, low LER under EUV patterning.

• Any given molecular glass platform has the potential for both base development and scCO2 development.
 – Molecules approaching 2000 g/mol significantly soluble
 – < 65nm features shown with select systems

• First report of intrinsic positive-tone system for scCO2 development.
Acknowledgements

• Funding
 – SRC/Sematech ERC for Environmentally Benign Semiconductor Manufacturing

• Facilities
 – Cornell Nanoscale Facility (CNF)
 – Cornell Center for Materials Research (CCMR)

• Folks
 – Prof. Chris Ober and entire Ober Group
 • Dr. Rama Ayothi
 • Kosuke Tsuchiya
 • Anuja De Silva
 • Camille Luk