Fate of CMP Nanoparticles During Wastewater Treatment

F. Gomez, D. Brown, J. Field, F. Shadman, R. Sierra

Dept Chemical and Environmental Engineering
The University of Arizona (E-mail: fgomez@email.arizona.edu)
Nanoparticles (NPs): Materials with at least one dimension of 1 to 100 nm

Adapted from Andrew Schneider’s “Amid nanotech’s dazzling promise, health risks grow”, 2010
What makes nanomaterials interesting?

- **Small size:**
 Surface area, atoms exposed

- **Shape (spheres, flakes, tubes, rods, etc.):**
 Pattern of molecular bonds

- **Chemical composition:**
 Crystal structure, pollutants on surface

- **Solubility:**
 Dispersion or agglomeration

Quantum effects and bulk properties!!
Benefits associated to nanomaterials

- **Environmental:**
 Pollution prevention, remediation/treatment

- **Water:**
 Improve water quality

- **Energy:**
 Increase efficiency, production, and storage

- **Materials:**
 Increase selectivity in chemical reactions, replacement of toxic materials

- **Agriculture:**
 Genetic improvement of plants and animals
Introduction: Nanoparticles market

Household products containing nanomaterials:

- Sporting goods
- Food packing materials
- Stain-resistant clothing
- Healthcare products
- Cosmetics

Major nanomaterials consumers:

- Semiconductor industry:
 - Chemical-mechanical planarization (CMP)
 - Photolithography
- Automotive catalysts
- Magnetic recording media
- Sunscreens

Developed by the U.S. Air Force

1 trillion dollar market by 2015
NSF, 2001
Little is known about the fate of nanoparticles in the environment and possible toxic effects on living organisms.
Introduction: Potential risks

Exposure:
- Inhalation
- Ingestion
- Dermal

<table>
<thead>
<tr>
<th>Nanoparticles</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fullerenes (C_{60})</td>
<td>Antibacterial; oxidative stress; may induce DNA damage in plasmids</td>
</tr>
<tr>
<td>Titanium dioxide (TiO$_2$)</td>
<td>Antibacterial; oxidative stress; may damage DNA; tissue thickening</td>
</tr>
<tr>
<td>Zinc oxide (ZnO)</td>
<td>Oxidative stress; may damage DNA; pulmonary adverse effects</td>
</tr>
<tr>
<td>Cerium oxide (CeO$_2$)</td>
<td>Oxidative stress; thickening of heart tissue, could bind to cell membrane of Gram-negative bacteria</td>
</tr>
</tbody>
</table>
Introduction: Fate of NPs in the Environment

- It is largely unknown.
- Agglomeration/sedimentation and partitioning onto solids are thought to control their fate in the environment.
- Could travel long distances if mixed with stabilizers or attached to organic matter.
How do nanomaterials get to wastewater treatment plants (WWTP)?

Muller and Nowack, 2008, estimated TiO$_2$ and Nano-Ag reaching WWTP
39% nano-Ag
64% TiO$_2$

Adapted from http://www.epa.gov
Introduction: Wastewater treatment

WWTPs remove **harmful organisms** and **pollutants**

Primary treatment
Remove large solids (rags and debris) and smaller inorganic grit

Secondary treatment
Removes organic contaminants using microorganisms to consume biodegradable organics

Tertiary treatment
Removes nutrients and may include disinfection of the effluent

Introduction: Wastewater treatment

PRIMARY TREATMENT

Screening/Grit removal → Primary Settler

SECONDARY TREATMENT

Biological Treatment → Secondary Settler → Disinfection → Effluent

Sludge → Anaerobic digestion → Disposal
Introduction: Wastewater treatment

Returned activated sludge (RAS)
High water content
Forms flocs
Possible removal mechanisms

Gravity Settling

Entrapment by A/S flocs

Ad- and/or absorption

Intake
No conclusive results have yet been obtained

- Activated sludge process attained high removal of CeO$_2$ from **synthetic medium** (Limbach et al. 2008)

- Iron oxide (Fe$_3$O$_4$) cored SiO$_2$ NPs **coated with a nonionic surfactant** effectively **removed during primary treatment**. **Unfunctionalized** NPs **escaped** with the effluent (Jarvie et al, 2009).
Objectives

- To investigate the removal of CeO$_2$ nanoparticles (NPs) in municipal wastewater during activated sludge treatment

- To elucidate the mechanisms responsible for their removal from aqueous dispersions
Lab-scale secondary treatment

Aeration tank:
\[V_{\text{reactor}} = 1.19 \text{ L} \]
\[\text{HRT} = 9 \text{ to } 10 \text{ hrs} \]

Settler:
\[V_{\text{reactor}} = 0.6 \text{ L} \]
\[\text{HRT} = 5 \text{ to } 6 \text{ hrs} \]

The system was operated under two different conditions:

- **Synthetic wastewater**
 Composition according to OECD

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peptone</td>
<td>220</td>
</tr>
<tr>
<td>Meat extract</td>
<td>150</td>
</tr>
<tr>
<td>Urea</td>
<td>10</td>
</tr>
<tr>
<td>K_2HPO_4</td>
<td>8</td>
</tr>
<tr>
<td>NaHCO$_3$</td>
<td>200</td>
</tr>
</tbody>
</table>

- **Real wastewater**
 Primary-treated wastewater collected in a weekly basis from a local WWTP
NP Stock:

CeO$_2$ (50nm)

Concentrated stock prepared by sonication (pH = 3.4)

Concentrated stock diluted in acidic water (pH = 3.4)

Transmission electron microscope image of nano-size ceria with average particle size 50 nm
Fate of nanoparticles

Inductively coupled plasma-optical emission spectroscopy instrument (ICP-OES)

- **Total Ce concentration**
 - Microwave-assisted digestion
 - Reduces interference by organic matter

- **Filtered Ce concentration (< 200 nm)**
 - Directly measured in ICP-OES

- **Scanning electron microscopy (SEM)**
 - Image the sample by scanning it with a high-energy electron beam

ICP-OES

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
Reactor performance

- **Chemical oxygen demand (COD)**
 - Indirect measurement of the organic content
 - Sample + Strong oxidant $\xrightarrow{150^\circ C}$ Spectrophotometer

- **Acetic acid removal**
 - Measured by Gas-Chromatography with Flame Ionization Detector (GC-FID)
 - Agilent 7890A GC
Results: Average particle size (CeO_2)

Diameter Size Average (nm)

$[\text{CeO}_2] = 200$ ppm

pH = 3.46

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
Results: Stability particle size (CeO$_2$) in aqueous suspension

CeO$_2$ NP aggregate in municipal wastewater

Average Particle Size (nm)

- CeO$_2$ (pH 3.2)
- CeO$_2$ (pH 7.5)
- CeO$_2$ + Real WW (pH 7.5)
- CeO$_2$ + Synthetic WW (pH 8.02)
Results: Average particle size (CeO$_2$)

Average particle size distribution in different media

<table>
<thead>
<tr>
<th>Sample</th>
<th>Avg Particle size (nm)</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>CeO$_2$ (pH 3.2)</td>
<td>132</td>
<td>1</td>
</tr>
<tr>
<td>CeO$_2$ (pH 7.5)</td>
<td>9035</td>
<td>46</td>
</tr>
<tr>
<td>CeO$_2$ + Real WW (pH 7.5)</td>
<td>5567</td>
<td>114</td>
</tr>
<tr>
<td>CeO$_2$ + Synthetic WW (pH 8.02)</td>
<td>175</td>
<td>6</td>
</tr>
</tbody>
</table>

Average particle size distribution of nano-sized CeO$_2$ in acidic media (pH 3.2)

- Average particle size (nm): 132 ± 1
- Zeta potential (mV): 44.5 ± 1.1
Results: Fate of CeO$_2$

Total Ce Removal by Activated Sludge Treatment

- 95.7% average removal

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
Results: Fate of CeO$_2$

< 200 nm CeO$_2$ Removal by Activated Sludge Treatment

98.7% avg removal

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
Results: Fate of CeO$_2$

< 25 nm CeO$_2$ Removal by Activated Sludge Treatment

- 97.2% avg removal
Results: Fate of CeO$_2$

Total Ce removal (Real WW)

- 95.7% avg removal

Ce < 200 nm removal (Real WW)

- 98.7% avg removal

Total Ce removal (Synthetic WW)

- 94.3% avg removal

Ce < 200 nm removal (Synthetic WW)

- 78.9% avg removal

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
Results: Reactor performance

Removal of Organic Matter by Activated Sludge Treatment (Real Wastewater)

Fresh wastewater batch

COD concentration (mg/L)

Time (days)

Total COD in

Total COD out

66.8% avg removal

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
Acetate Removal by Activated Sludge Treatment (Real Wastewater)

Results: Fate of CeO$_2$

93.4% avg removal
Results: Reactor performance

Volatile Suspended Solids in the Aeration Tank

Day 0
Day 49
Day 58

Concentration (gVSS/L)
Results: CeO$_2$ + sludge

Original sludge (t= 0 day)

Bioreactor
Results: CeO$_2$ + sludge

Sample from Bioreactor

Protozoa

Extracellular material

Element microanalysis by energy dispersive X-ray spectroscopy (EDS)
Conclusions

- CeO$_2$ is highly removed during secondary treatment. Only a small fraction of the NPs (< 5%) detected in the effluent.

- Neutral pH values promote agglomeration of NPs dramatically increasing their average particle size compared to the size in a pH 3 solution.

- CeO$_2$ did not cause microbial inhibition, as demonstrated by the continuous removal COD and acetate.
Fate of aluminum oxide (Al₂O₃) NPs in municipal wastewater during activated sludge treatment.
Acknowledgments

ISMI/Sematech

SRC/Sematech Engineering Research Center for Benign Environmental Semiconductor Manufacturing (ERC)

Mexican National Science and Technology Foundation (CONACyT)